
RESEARCH PAPER

SMA-X: versatile information sharing in and around
telescopes and beyond

Attila Kovács ,* Paul K. Grimes , Christopher Moriarty, and Robert Wilson
Center for Astrohysics | Harvard & Smithsonian, Cambridge, Massachusetts, United States

ABSTRACT. We developed the Submillimeter Array eXchange (SMA-X) as a real-time data shar-
ing solution, built atop a central Redis database. SMA-X is a storage convention,
facilitated by a set of server-side Lua scripts (or Redis functions) which enable effi-
cient low-latency and high-throughput real-time sharing of hierarchically structured
data among the various systems and subsystems of the telescope. It enables fast,
atomic retrievals of specific leaf elements, branches, and sub-trees, including asso-
ciated metadata (types, dimensions, timestamps, origins, and more). At the SMA,
we have relied on since 2021 to share a diverse set of ∼10; 000 real-time variables,
including arrays, across more than 100 computers, with information being published
every 10 ms in some cases. SMA-X is open-source and is freely available to every-
one through a set of public GitHub repositories, including C/C++ and Python3
libraries to allow integration with observatory applications. A set of command-line
tools provide access to the database from the POSIX shell and/or from any
scripting language, and we also provide a configurable system daemon for archiving
the observatory state at regular intervals into a time-series Structured Query
Language (SQL) database to create a detailed historical record.
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1 Introduction
When operating an observatory, the control system must gather information from hundreds of
sources in quasi-real time: telescope drive encoders, sensors from various equipment and devices,
diagnostic data from instrumentation, weather data, and various programs running on different
computers. At the Submillimeter Array (SMA),1 we monitor data from eight antennas, nine
weather stations, 16 receivers, 48 correlator units, dozens of control computers, and hundreds
of programs and sensors. The distributed programs of the control system must have access to a
selection of shared information to manage observations, operate hardware optimally, and create
fully described scientific data products. When components report values that are outside of their
normal operating ranges, it is important to act without delay, both so that affected data can be
flagged appropriately for problems, and to bring it to the attention of operators, who may be able
to correct it. How well information is shared among systems in a telescope is a major factor in
determining the efficiency of its operation. Even small latencies can compound in the chain of
information flow and result in significant idle times or else manifest in degraded telescope
performance and/or poor data quality.
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Different telescopes have found different answers to information sharing for their monitor-
ing and control needs.2 A number of observatories rely on peer-to-peer (P2P) communication,
typically through ethernet (e.g., TCP/IP or UDP sockets) or other forms of digital links. By P2P,
we define any communication between a pair of endpoint nodes, in which messages produced at
point “A” are explicitly addressed to the consumer point “B,” or else explicitly requested by point
“B” from the address of point “A”—regardless of whether the transaction is direct or via some
middleware (see Fig. 1).

Until recently, the SMA has relied almost exclusively on P2P information sharing both over
commercial reflective memory hardware and using Open Network Computing Remote
Procedure Calls (RPC).3 Other telescopes, such as APEX, developed their own custom P2P
messaging systems,4 e.g., with communication over UDP sockets.

2 Beyond P2P
Such P2P systems have clearly been reasonably successful in providing the necessary means of
communication among telescope systems. In some cases, P2P is used primarily in relation to a
centralized decision-making “control-system” software or middleware (such as APECS4,5 at the
APEX telescope). Alternatively, P2P links may route specific bits of information between various
dependent programs of a distributed control system (see Fig. 1). However, P2P information
sharing has at least two fundamental flaws: inflexibility and unnecessary complexity.

What happens when a new instrument or component is added to the system, if a program is
changed to have new switches, if it produces different/new values than it did before, or if
migrated from one IP address to another (heavens forbid to a different network even)? The
P2P system of information sharing does not usually handle such changes well. For every change,
several programs may have to be explicitly modified to send or receive vital information regard-
ing the new components or to route data to/from a new address. Centralized control systems, such
as APECS, may have to be re-initialized every time the configuration changes relating to how or
what information is shared in the telescope ecosystem. Because control systems typically handle
information from multiple sources in parallel, every such change has the potential to create new
race conditions, bottlenecks, or even deadlocks. Such unexpected side effects from changes are

Fig. 1 Left: Maximal network of decentralized P2P sharing among nodes, s.t. each node has
access to information from all other nodes.Right:Centralized information sharing. The same graph
may represent P2P sharing to a central (shaded circle) “control system” or middleware node or else
to a public message board. In the P2P case, nodes A and B are isolated from one another and do
not have access to each other’s shared data, unless the central control system explicitly forwards
information from one node to another—decision making must be predominantly centralized. In the
case of the central message board, however, nodes A and B have unfettered access to each
other’s shared data, as well as data shared from any other node, so they can make their own
control decisions as appropriate. A central message board, such as SMA-X, enhances information
sharing and enables decentralized decision making with a minimal network complexity.
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often non-trivial to trace and/or fix, especially because the developer too can only peek at the
shared information through the programs that are on either end of individual P2P links.

A second, equally nagging issue of P2P systems, is that the number of P2P links may scale
as OðN2Þ for N information sharing nodes present in distributed control systems. Thus, when
telescopes have hundreds of individual components that produce and/or consume shared infor-
mation, the number of P2P links can easily grow into thousands. Consequently, information flow
can become tedious to trace and manage. When something does not work as expected, it may
take a very long time to track down how related bits and pieces of information criss-crossed their
way across the system, and where it all went wrong exactly, especially because the information
exchange happens on private channels, which do not facilitate external diagnostics.

Thus, while P2P systems can be pseudo-stable in an unchanging telescope environment,
they all too often become visibly unstable in a constantly evolving observatory. As most observa-
tories are in a perpetual state of development, perhaps P2P is not an ideal solution for them, in
general.

2.1 Public Information and Decentralized Decision Making
One may observe that every bit of data is either produced or consumed by a particular component
in the system, regardless of how complex that system is. There is no reason why the producers of
information should prejudice who or what programs can access their shared data (or how).
Aweather station that measures humidity, does not need to have a definitive list of all programs
in the telescope that need a humidity value. Conversely, a program that needs a humidity value
should also not care what specific component or program, at what IP address, provides the value.
But that is exactly what P2P requires at its core, P2P dictates that either the producer of infor-
mation send it to its consumer(s) explicitly or else that the consumer(s) of information request it
from the specific producer. This is the case even if middleware is involved in the (re)distribution
of information, which may save the weather station from needing to know all consumers of
weather data, only for the middleware to be needing that knowledge instead.

A better way is to share information without the explicit routing that P2P involves, such as
via a public message board. Producers of information simply post their data to the public message
board, and any consumer that needs any bit of shared information can obtain it from there. The
general availability of information about all components is conducive to decentralized decision
making also, as different programs may individually gather the information they need to make
appropriate decisions on operating a particular sub-system without having to control all equipment
from a central hypervisor (middleware) software. A public message board can be implemented
with a publish-subscribe (PUB/SUB) system (e.g., the one onboard Stratospheric Observatory for
Infrared Astronomy (SOFIA)6), and/or via a real-time database (such as Redis or memcached).

2.2 PUB/SUB Versus Persistent Real-time State
Publish-subscribe refers to messaging systems, where information that is published to a specific
channel is immediately forwarded to the set of active subscribers of that channel. For example,
SOFIA’s Mission Controls and Communication System7 published housekeeping data at regular
intervals (e.g., 1, 10, and 50 Hz) in this way. Depending on what cadence was required by the
consumer program, it would subscribe to the appropriate channel(s) and would receive updated
telescope data “streamed” to it at the desired rate.

This works well for data that is broadcast frequently enough, such that it does not matter
much if one misses an occasional update. If a consumer to the 1 Hz “stream” subscribed to a
channel just after a message was sent on it, it will have to wait at most a second before it receives
the next update. Some PUB/SUB systems (but not all) overcome that limitation by sending the
last message to new clients upon connecting. However, although this ensures that clients are state
aware immediately after connection, the client might not know how long ago that last message
originated, and hence whether this initial state is valid or else stale.

The second public message board solution is to use a real-time database instead, which
effectively stores a snapshot state of all shared variables at any given time. Producers of infor-
mation update their state variables when these change, and consumers can poll them when they
need it. However, this too can be abused easily. One may flood the network with high-frequency
polling of slowly changing data or else suffer unnecessary delays if polling data less frequently.
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This is why we developed the SMA eXchange (SMA-X). It offers the best of both worlds: it
can be used to provide the most current state of data, together with origination timestamps and
other metadata, regardless of when a client connects, and it also notifies clients immediately
when variables of interest are updated, without the need for frequent polling to detect changes
in state—all with minimal network traffic to conduct transactions.

3 SMA eXchange
The SMA-X is a data storage and messaging convention built on top of a central Redis database
(version 4 or later). SMA-X is facilitated by a set of server-side Lua scripts (or functions), which
provide a higher-level interface to the Redis or Valkey database. Redis is primarily a very effi-
cient open-source key/value storage solution, which includes a PUB/SUB subsystem. Data are
both labeled and stored verbatim as “strings.” Beyond that, Redis and its clones such as Valkey or
Dragonfly, offer features that make them an ideal choice for a data sharing solution for distributed
systems, in general

• Stored data can be grouped into tables (hash tables in Redis terminology), which may be
accessed efficiently and atomically both in their entirety or by individual fields.

• Supports pipelined (batch) mode access.
• Includes a PUB/SUB subsystem.
• Allows server-side scripting (via the Lua language) to implement higher-level atomic data

access.

3.1 Feature Overview

3.1.1 Basic Data Types

Individual SMA-X variables are stored as “fields” in Redis hash tables, either as scalar values or
as flattened arrays. SMA-X supports all primitive and numerical data types used in typical pro-
gramming languages. Individual variables are stored in serialized (ASCII) representation which
allows platform-independent access to these. See Table 1 for details.

3.1.2 Metadata

For every variable stored in SMA-X, we also store a set of essential metadata, such as the original
variable type, its array dimensions, the precise time it has been shared, the host and/or program
that provided the data, and statistics on how many times the data has been updated or accessed.
For example, the original data type of the field bar in table foo is stored in the Redis hash table
〈types〉 under the field named foo:bar. See Table 2 for details. The essential metadata is added/
updated every time data are written into SMA-X via the C or Python libraries, command-line
tools, or directly via the Lua helper scripts. In addition, it is retrieved each time data is read from
SMA-X via the libraries, command-line tools, or Lua helpers. Beyond the essential metadata,
additional optional metadata may be provided as needed (see Table 3). The optional metadata

Table 1 SMA-X basic storage types.

Data type Description

int[8,16,32,64] Signed integer value(s), with or without specific widths, e.g., int or int32

float Single-precision (32 bit) floating point value(s)

double Double-precision (64 bit) floating point value(s)

boolean Logical true/false value(s)

string ASCII string value(s), stored in JSON-style8,9 escaped form

struct Reference to a Redis hash table containing sub-structure data
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must be explicitly provided by the producer program, if desired, usually through an explicit
library call. The producer may provide these only once, e.g., at first write after the program
starts, or update them each time the data is updated—whichever is appropriate for the particular
type of extra metadata. Similarly, consumers of optional metadata must retrieve these separately,
once or every time, as appropriate. In the future, we may extend the SMA-X standard to include
further types of optional metadata.

3.1.3 Hierarchical data

SMA-X is designed to store data organized hierarchically, much like a file system would (see
Fig. 2). It allows data to be grouped in a logical way by systems, subsystems, and components, so
they may be easily located and related bits of information can be accessed together easily. Just
like a file-system layout, the hierarchy is decided by the program that produces the data and
writes it into SMA-X. The consumers then simply get to view that data in the form intended
by the producer (with some added flexibility on casting leaf nodes to different types and/or
padding or truncating to different element counts). The SMA-X storage convention allows for
efficient atomic read/write access of structured data both as a whole or any of its branches or
leaf nodes individually. The level of access provided by SMA-X is generally similar to the capa-
bilities of the built-in Redis Javascript Object Notation (JSON)8,9 support, which was introduced
in Redis 7 after the inception of SMA-X. However, SMA-X also offers features that extend
beyond the native JSON support with its support for metadata, such as timestamps.

3.1.4 Atomicity

Bundled data, such as the included metadata and/or structures, are both written to and retrieved
from the SMA-X database in a single atomic operation. Thus, the user need not worry about
concurrency issues, such as one client getting incompletely updated data, while another is in
the middle of setting new values for these. This will never happen with SMA-X as long as the
user reads and writes bundled data with singular calls. (In the current version of SMA-X, ato-
micity only applies for each layer at a time of deep structures when writing, but it is a limitation
we hope to overcome soon via a new Lua script and/or function as well as corresponding changes
to the C and Python libraries.)

Table 2 Essential metadata, stored for every variable in SMA-X.

Meta table Description

〈types〉 Storage data type of each variable, see Table 1.

〈dims〉 Array dimensions for each variable.

〈timestamps〉 Precision UNIX timestamps when the variable was last updated in SMA-X.

〈origins〉 Host and/or program that provided the variable

〈reads〉 Number of times the variable as read by clients

〈writes〉 Serial number, i.e., number of times the variable was updated in SMA-X

Table 3 Optional metadata, stored, and accessed as needed.

Meta table Description

〈descriptions〉 A concise description of what data the variable stores

〈units〉 Physical unit of the data (e.g., if not SI).

〈coords〉 Coordinate system description for array data in one or more dimensions
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3.1.5 Update notifications

Every time a variable or entire structure in SMA-X is updated, a set of notifications on specific
PUB/SUB channels bearing the variable’s name (as well as those of its parent hierarchies) are
sent, so that subscribed clients are notified immediately of state changes on any/all variables of
interest, and can act on these as appropriate. This is similar to the INVALIDATE push messages
introduced in Redis 7 with its CLIENT TRACKING feature, but SMA-X will send these update
notifications not only for the leaf nodes that changed but also for its parent hierarchies, which is
critical for the robust detection of state changes for hierarchical data. For example, if telescope:
project:target:name is changed, SMA-X will also notify that the embedding structures telescope:
project:target, telescope:project, and telescope have changed as a result. (In addition, if multiple
fields are updated at once inside a structure, SMA-X will send just the necessary single noti-
fication for the parents at the end of the update.)

3.1.6 Remote settings

Extending on the set of features described above, we also specify a convention for
“commanding” program settings remotely through SMA-X. Remote settings are analogous to
RPC, except that they do not provide a “computed” return value for the specific caller. (You
may think of them as RPC with void return type.) The SMA-X database simply stores identical
sets of commanded and actual values that represent a program’s settings. The program may
monitor the commanded set for changes, and then report applied values back in the actual set,
which in turn a client program may monitor for confirmation that changes were applied (and
how exactly).

3.1.7 Remote messaging

Beyond the PUB/SUB channels that carry notifications for all SMA-X variables, we also stand-
ardize the naming for channels that may carry messages from individual programs, and which
can be monitored by clients, e.g., to selectively monitor progress or errors/warnings remotely.

Fig. 2 Example structured data layout in SMA-X. This excerpt stores data about the currently
observed source in the project. For example, the source name is stored in the Redis hash table
telescope:project:target under the field name and has the string value of “3c273.” The
values are shown as they appear in the database in the serialized form as strings.
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3.2 SMA-X Client Tools & Libraries
We provide C/C++ and Python three libraries, as well as a simple set of command-line tools to
help access and maintain your custom SMA-X database. The command-line tool smaxValue
can be used to query SMA-X variables, including the essential metadata, or to list the contents of
specific tables, whereas smaxWrite can be used to add/update SMA-X data from the com-
mand-line. Both command-line tools can be used with scripting languages, such as bash, perl,
or similar.

The C/C++ and Python libraries come with a generally similar set of features. Python, of
course, allows for a cleaner, type-agnostic interface, and for exception handling. By contrast, the
C/C++ library offers families of related functions, with separate calls providing the same func-
tionality for each supported data type, and it relies on return values and errno to indicate error
states. Both libraries offer detailed API documentation to guide users.

Below we summarize some of the main features of the C/C++ library, noting here only that
some of these may be implemented somewhat differently for the Python client library. Refer to
the documentation included with the libraries themselves on their particular implementations.

The SMA-X C/C++ client keeps up to three separate TCP/IP channels open to the SMA-X
Redis server: (1) for interactive transactions, (2) for pipelined (batch) requests, and (3) for
PUB/SUB notifications and management thereof.

3.2.1 Automatic type conversions

The C/C++ library implements automatic type conversions for leaf-node access, such that the
client software can access the shared data as a different type from how it was produced. Because
data is always stored as string(s), the parsed type of data may be anything really, regardless of the
original storage type, as long as the stored string value(s) can be parsed as the desired type. This
includes both widening and narrowing conversions, such as from int16 to int8, int64, or
float, and vice-versa—as well as conversions between numerical, logical, and string types.
The Python library is intrinsically not strongly typed and allows for most of the same conversions
with little or no effort. This feature allows tolerating changes to the data type that is generally
transparent to dependent clients. For example, you used a 32-bit floating point value to store
measurement and have written clients to process data as a 32-bit float. One day you decide
that you want to store data with higher precision, so you start writing 64-bit double-precision
values instead. Your existing clients will continue to read the data as a 32-bit float, without
breaking their functionality.

3.2.2 Automatic array padding/truncation

The C/C++ library implements automatic padding or truncation to serve the user application the
data it wants/needs. Consider an array of values that contain a set of readings from N instruments
or channels. You have written a client application processing these N values. Then, new hardware
is deployed, adding other M units/channels to the system, so the SMA-X database now has
N þM elements in the array for the same variable. The C library will continue to deliver just
the N values for existing clients that they expect. It does not break anything if the client does not
process the additional values. Of course, you may want to update the client application sooner or
later to process N þM values, but in the meantime, it will keep chugging on the “old” way.
Similarly, if some units are decommissioned, and fewer than N values are reported in the
SMA-X array data, the C library will just pad the remaining elements with zeroes so your appli-
cation can continue to process N values the same as always.

3.2.3 Adapting with metadata

Although the above features allow existing clients to continue “normal” operation even if the data
in SMA-X may have changed its type or element count, it may not be the best or the desired way
for the client to adapt to changes. If you anticipate that the type or size of some leaf nodes may
change as the telescope ecosystem evolves, you can make your client applications more future
proof using the metadata to check the actual data type and size, as was written, and then use the
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data accordingly. This way, clients can detect changes in data type or element count on the fly and
properly adapt their behavior accordingly. The C/C++ library provides functions to return current
values in dynamically sized arrays also, much like the Python API readily does. We also note that
the addition of new nodes or structures into SMA-X has absolutely no effect on existing clients
and functionality. Existing SMA-X clients can continue operating uninterrupted as the database
is expanded to contain new nodes.

3.2.4 Pipelining (batch mode)

Data that are pushed to SMA-X is sent out via the pipelined connection (provided it’s available).
As such, data sharing from your application is always non-blocking and incurs no unexpected
overheads because it does not wait for confirmation back from the Redis server. This fire-and-
forget approach ensures that the sharing of information is safe even when used from within
timing critical processes and threads. Data can also be retrieved asynchronously in batches
through the pipeline connection. Queries can be submitted to a queue, and the responses that
are received for these are processed asynchronously in a separate background thread. The user or
application can perform other time-critical tasks, whereas the responses are gathered and then
either wait until the requested batch of data is available (via appropriate synchronization points
inserted into the queue) or else request an asynchronous callback. Because pipelined transfers do
not require a chain of round-trips to the SMA-X server over the network, they can provide orders
of magnitude higher throughput for bulk transfers than sequentialized individual interactive
transactions.

3.2.5 Lazy access

The SMA-X library provides lazy access for data retrieval. Lazy retrieval is most useful when
one needs information more frequently than it is produced, without flooding the network with
frequent polling requests. It essentially amounts to maintaining locally cached copies of the
requested SMA-X variables. The caches are either invalidated if SMA-X notifies of an update
or else seamlessly updated in the background. (The caching mode can be selected for each lazy
variable individually if desired.) When your application needs the current value of a variable, it is
either retrieved instantly from the local cache (with zero network traffic), provided that the cache
is valid or else its current value is fetched from the SMA-X database.

3.2.6 Semaphores and callbacks

We provide means to wait (block the current thread) until some variable or some set of variables
change. Monitored variables to wait upon can be designated individually or via glob patterns,
and a timeout value can also be specified to return with an error (or exception) in case no changes
were detected in the allotted amount of time. Alternatively, one may specify a callback
function to be invoked asynchronously when a variable with a matching name or pattern is
updated.

3.2.7 Resiliency

We designed our C/C++ and Python libraries to be generally resilient to intermittent outages of
the SMA-X server or the network infrastructure. If locally produced data cannot be pushed to the
SMA-X server, the libraries will maintain a local store of the pending updates, keeping only the
most recent values for any shared variable, and will try reconnecting to the SMA-X server in the
background at regular intervals. If and when SMA-X is successfully reconnected, the pending
local updates are pushed before any new data is sent to or received from the SMA-X server. Note,
that because the local store will cache only the most current version of each “sent” variable,
its storage needs will not grow with repeated submissions for the same variable while the server
connection is down, and the total size of the local store will never exceed the storage size of the
data produced locally, notwithstanding some additional overhead.
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3.3 Performance Notes
We benchmarked SMA-X on an AMD Ryzen 5 PRO 6650U (released in 2022) laptop running
Fedora Workstation 41 (kernel 6.12.4), which acted as both client and server for the tests, using
the loopback interface, and Valkey 8.0.1 for the SMA-X database backend, and the smax-clib C
library for the client (the benchmarking program is included in the smax-clib GitHub repository).
It is not necessarily the most ideal or cutting-edge benchmarking setup, but it provides a ballpark
idea for the level of peak performance that you might expect on fast local area network
(LAN) also.

In this setup, we could consistently write 75,000 variables (including metadata) per second
and read ∼205; 000 variables (also with metadata) per second for assorted types (a collection of
scalars of various types, small arrays, and strings) in pipelined mode or read around 33,000
variables per second in interactive (round-trips) mode.

The interactive mode performance is likely limited by the roundtrip time, which was mea-
sured around 30 to 70 μs with the ping command. Thus, the 33,000 round-trip transactions per
second are broadly consistent with the expected limits of the loopback interface itself. The pipe-
lined mode throughput is likely limited by the Valkey server performance. Here, we note that the
use of Lua scripts seems to have only a moderate effect on the overall performance, which for
retrievals remained within a factor of ∼1.5 of the performance measured for raw Redis HGET
command in the same test setup and for the same data, without the metadata.

Similar tests performed on the SMA telescope 1 GB∕s network, between two computers
(a physical machine and a VM), yielded lower metrics at around 40,000 writes per second,
or around 48,000 pipelined reads per second, and interactive performance at 2600 to 3000 trans-
actions per second (in excellent agreement with the ping roundtrip timing measurements at
around 400 μs). What this shows is that in real-world applications, the true performance of
SMA-X is likely limited by the latencies and the throughput of the telescope network and not
so much by the software layer itself.

3.4 Creating a Historical Record
By nature, SMA-X stores only a snapshot of the current state of all shared variables. It has no
sense of history or prior state information, by design. (Redis offers such features, but SMA-X
does not use these.) It is however often useful to keep a historical record of the observatory’s
runtime state. It can help diagnose problems after they occur or validate data at a later time, and
engineers may use it to troubleshoot hardware and/or software components by having access to a
long-term behavioral record. At the SMA, we have been keeping such a historical record of
shared data (even before SMA-X) at 1-min resolution, going back 12 years. We find it an invalu-
able resource, and the possibility of being able to check specific conditions and sensor values at
the telescope on a given day and time some years back is a priceless feature.

For this reason, we have also developed a connector daemon that can regularly sample
and/or snapshot all, or a selection of, SMA-X variables at regular intervals and store them in
a PostreSQL database,10 with or without a TimescaleDB extension for more efficient retrieval
of the time-ordered data. At the Submillimeter Array, we store a snapshot of nearly all SMA-X
variables once every hour and store updates to changing variables once per minute as necessary.
The connector application also stores metadata history, when changes to metadata are detected.
The connector application is highly configurable. You can set

• the database location, name, and user credentials
• whether or not TimescaleDB extension should be used
• the frequency of regular updates for changing variables (e.g., 1 min)
• the frequency of full snapshots of the SMA-X database (e.g., 1 h)
• variables and glob patterns specifying which variables to include in or exclude from the

archival
• a maximum size for variables that will be archived automatically
• a maximum age of variables to be included automatically (so that orphaned data are not

polluting the historical record forever)
• a sampling for array variables where only every n’th array element is stored.
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• to force archival of select variables or patterns even if they would otherwise be excluded by
one of the other settings above.

The connector daemon can be integrated with and managed via the systemd, e.g., to start
automatically after boot. It will monitor the SMA-X database continuously, and insert new tables
into the PostgreSQL database as necessary for any new variable(s) appearing in SMA-X, pro-
vided these are not excluded from archiving by the configuration.

A particularly welcome aspect of having a historical record stored in a PostgreSQL database
is that it is very easy to create time-series visualizations of these, e.g., with Grafana. As such, one
can easily produce web pages for visual monitoring of shared variables of particular importance.

3.5 Current Status and Future Plans
SMA-X has been in use at the Submillimeter Array since 2021, where it has proven to be highly
stable and reliable. We use both the C and Python libraries routinely for our everyday operations.
SMA-X is also used with the new control system of the Massachussetts Institute of Technology
(MIT) Haystack 37-m telescope.11 The SMA-X source code, libraries, and tools are open-source
and freely available to anyone via the set of GitHub repositories listed in Table 4.

There is still room for SMA-X to grow in capabilities. We readily foresee a number of ave-
nues for adding new features or improving existing ones. At present, we are considering the
following areas, in which SMA-X can extend and expand functionality:

• Fully atomic deep structure writes.
• Initializing optional metadata and static configuration data via a separate persistent con-

figuration database such as a MongoDB or an Structured Query Language (SQL) database.
This way SMA-X may provide the same access protocol for static data, which is not
directly produced by the real-time system.

• More optional metadata, such as normal operating ranges, and critical levels for measured
values, which may be used, e.g., by an automated warning system.

• Direct support for complex-valued data types (e.g., complex [32,64]).
• Standardized support for non-persistent, streaming-only data via PUB/SUB. It may be

useful to provide bundled, self-contained, data packets (e.g., real-time telescope pointing
information) published at a fast cadence (>10 Hz) to support low-latency real-time client
applications for these.

• Use Redis list storage types to implement data queues (FIFOs) on SMA-X, such as for
managing an observing queue, or a set of tasks that have to be executed sequentially.

• Asynchronous remote procedure call (RPC) through SMA-X. SMA-X could allow for
more proper zeroconf remote calls using the Redis PUB/SUB infrastructure, with unique
program IDs (e.g., host:program[:task]) in lieu of physical addresses. We have a draft pro-
tocol for RPC over SMA-X, but it has yet to be finalized and implemented for the client
libraries.

• Client libraries for other languages, e.g., Java, Rust, Go. We welcome external contributions
for implementing additional client support for the programming language(s) of your choice.

• We plan to package the SMA-X server, libraries, and tools for Linux distributions (e.g.,
Debian and Fedora RPM packages), as well as for Homebrew (MacOS X) to make it more
easily available to users and applications.

Table 4 SMA-X GitHub repositories.

GitHub repository Description

Smithsonian/smax-server Server configuration and systemd integration.

Smithsonian/smax-clib C/C++ client library and command-line tools.

Smithsonian/smax-python Python3 client library.

Smithsonian/smax-postgres PostgreSQL connector application
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• Enhanced security. SMA-X presently relies on restricting access to internal networks to
prevent unauthorized access. Redis provides additional security features, such as database
user authentication, SSH-tunnel-only access, and Transport Layer Security (TLS) support,
which can enhance and further protect the database from outside attacks.

• Let us know what other added features would make SMA-X work better for you.

4 Conclusion
SMA-X offers an appealing, fast, and versatile solution for distributed monitoring and control in
and around telescopes, or for other distributed systems. It relies on a central Redis server, as a
public message board within the telescope ecosystem, for sharing and accessing structured data
to/from various programs and nodes. Data access is atomic both for arbitrary data branches, sub-
branches, or leaf elements and includes metadata that describes the stored values. SMA-X unites
persistent storage of the current state of shared information with a PUB/SUB notification system
for updates—a powerful combination that allows clients to efficiently access the information
both on demand and/or when values are updated. The dual-mode information sharing minimizes
network traffic and eliminates latencies beyond those of the underlying networking layer. The
centralized Redis server also minimizes the number of network connections necessary to OðNÞ
instead of the typical OðN2Þ links required in distributed P2P systems. Moreover, because all
information is available to all programs/nodes within the ecosystem, SMA-X supports distributed
decision making in a way P2P typically does not. As such, SMA-X provides a superior solution
to existing P2P models for data sharing in distributed systems in general.

We provide a set of C/C++ and Python libraries that client applications can use to bring the
most out of SMA-X. These libraries offer additional features, such as asynchronous pipelining
(fast bulk data access), lazy access (with or without background caching), semaphores and call-
backs that can be used to act immediately on specific state changes, and resiliency for intermittent
network or server outages. Simple command-line tools provide basic access to SMA-X that can
be used with any scripting language (e.g., bash or perl). Furthermore, we provide a configurable
application that can be used to create a long-term historical record of all shared state variables in a
PostgresSQL database. These may be visualized, e.g., with Grafana, to show the time evolution
of select monitoring states or can be used for diagnostics in general. (At the SMA, we have such a
record going back to 12 years with a 1 min cadence, predating even SMA-X, and we find it
enormously useful for diagnostics, and for data quality-related checks even years after the fact).

It is our plan to maintain and develop SMA-X for the foreseeable future. As such, we expect
to expand and enhance the capabilities it provides and evolve the client libraries we maintain to
match. All of our existing SMA-X-related code has been open-sourced, and we hope to offer
packaged versions in the near future. We will welcome your questions, comments, suggestions,
or any other feedback that you may provide to make SMA-X better.
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