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Abstract. Detection and recognition of macular lesions in optical coherence tomography (OCT) are very impor-
tant for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may
contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple
retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based
detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-in-
stance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of
multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of
interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) con-
struct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was
tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epi-
retinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically
identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for
the cases with multiple lesions, which better assists macular disease diagnosis and treatment. © 2017 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.6.066014]
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1 Introduction
Macular diseases are the leading cause of vision loss among
adults and the elderly population.1,2 The macula, located at
the central area of the retina, is responsible for sharp and central
vision, which lets us see objects that are straight ahead. If the
macular tissues become abnormally damaged or disordered, the
lesions will appear. The numbers and types of the lesions often
determine the category and severity of eye diseases. For exam-
ple, lesions, such as epiretinal membrane (ERM), edema, dru-
sens, or cysts, are associated with various common diseases
[e.g., diabetic retinopathy (DR) and age-related macular degen-
eration].3–6 Therefore, detection and recognition of the retinal
macular lesions are crucial for the clinical diagnosis and treat-
ment of ophthalmopathy.7

As subtle retinal lesions may not be obvious on ophthal-
moscopy, the retinal imaging technology has been rapidly
developed during the past decades.8,9 Optical coherence
tomography (OCT) is a noninvasive imaging technique,
which utilizes the infrared-light interferometry to image
through the eye, aiming to see the structures beyond their sur-
face. Recently, the advanced OCT technique can achieve a
three-dimensional (3-D) tomography imaging of the eye
with micrometer resolution, providing ophthalmologists the

ability to visualize different types of lesions and thus assisting
macular diagnosis and treatment.10–12 In the clinical diagnosis,
ophthalmologists often need to manually identify the presence
of various macular lesions at each cross section of the OCT
volume. Such work is tedious, repetitive, and time consuming,
which causes serious problems for the early detection and
timely treatment of eye diseases. Therefore, development of
automatic OCT image analysis techniques is an efficient
way to provide supplemental information and support medical
decisions for clinicians and ophthalmologists.13

During the past years, numerous effective methods for auto-
matic recognition of macular lesions have been introduced.14–24

As thickness changes in the layers is an important indication of
disease status, some works14–19 first automatically segment the
layers of the input OCT image and calculate the thickness
between layers as a kind of extracted instance (or called the fea-
ture). Then, the calculated thickness is fed into a classifier (e.g.,
support vector machine (SVM), decision trees, or neural net-
work) to determine the one single lesion from the test OCT
image. In addition, other works20–22 attempt to extract the tex-
tures of the input image as a kind of instance. For example,
Srinivasan et al.20 utilize the histogram of gradients (HOG) to
extract the local texture instance. Then, the extracted texture in-
stance is also inputted into the SVM classifier to differentiate
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one lesion from another. Unlike the hand-crafted feature extrac-
tion methods (e.g., thickness or texture), very recent works23,24

use an unsupervised learning algorithm to automatically extract
the feature from the input OCT image, and then, the extracted
feature is used for the lesion recognition with a classifier.
Though the above methods can achieve a promising perfor-
mance on the classification of each specific lesion, they can
only extract one kind of instance from the whole test image
and assign one lesion label for that test image.

In clinical diagnosis, multiple lesions usually coexist within
one eye (see Fig. 1) as patients may simultaneously suffer from
several types of eye diseases, and even one type of the disease
may contain multiple lesions. For example, several types of
lesions [e.g., macular edema (ME), neovascularization, exu-
dates, vitreous, preretinal hemorrhage, and microaneurysms]
may simultaneously exist in the DR [Fig. 1(c)], and identifying
these lesions is essential for differentiating the stage of DR.25 In
this case, the desired lesion recognition method is expected to
detect multiple lesions in the OCT image of the subject.
However, the current lesion identification methods can

recognize only one type of lesion from the whole image and
thus have limitations for the diagnosis of eye disease with multi-
ple lesions or subjects with complex diseases.

To address the above issue, we propose a simple and practical
framework called multi-instance multilabel-based lesions recog-
nition (MIML-LR) for the simultaneous detection and recogni-
tion of multiple lesions. Motivated by works,26–29 the proposed
MIML-LR method can extract multiple lesion instances from
the test OCT image and assign multiple class labels for these
extracted instances. Specifically, according to the clinical
prior information of the lesion, the MIML-LR first segments
the input image into several regions of interests (ROIs), in
which each corresponds to a type of lesion.30–32 Then, we utilize
the speeded-up robust features (SURF)33 and bag-of-visual-
words (BoVW) descriptors34,35 to extract multiple lesion
instances from the segmented ROIs. Finally, the extracted lesion
instances are forwarded into a multiple SVM classifier to deter-
mine the types of lesions in the test OCT image. In this paper, we
applied the MIML-LR method to identify the presence of the
normal macula and three common lesions, including ERM,

Fig. 1 Examples of (a) OCT image from a healthy subject, (b) OCT image from a subject with the ERM,
MH, and drusen, and (c) OCT image from a DR subject with the ME and exudates.

Fig. 2 Flowchart of the MIML-LR system for multiple lesions identification.
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edema, and drusen, in spectral-domain OCT (SD-OCT) scans
and obtained a promising performance.

2 Methods
The proposed MIML-LR method is designed to detect three dif-
ferent lesions: ERM, edema, and drusen. To achieve this, the
proposed MIML-LR method first segments the input OCT
image into three ROIs, corresponding to different lesions.
Then, we utilize the SURF and BoVW descriptors to extract
the instances (features) from each region. After that, we learn
the instance-level classifier by training the multiclass SVM
on the extracted features. Finally, the trained classifier is
used to determine the lesion labels of ROIs. More details of
the proposed MIML-LR method are described in the following
(flowchart is shown in Fig. 2).

2.1 Regions of Interest Segmentation

Retinal lesion is the abnormal damage or change in the tissues of
the retina. According to the clinical experience, lesions needed
to be detected usually appear in some specific regions of the
input OCT image. For example, ERM is a nonvascular fibrocel-
lular proliferation that situates on the surface of inner limiting
membrane (ILM)36 [see Fig. 3(a)]. Edema is created when blood
vessels in the retina leak fluids, and the leaked fluid results in the
increase of retinal thickness (generally defined as the distance
between ILM and retinal pigment epithelium (RPE) layer boun-
daries)37 [see Fig. 3(b)]. Drusen is formed by the accumulation

of extracellular deposits between the RPE basal lamina and the
inner collagenous layer of Bruch’s membrane1,15 [see Fig. 3(c)].
Therefore, to detect the above three kinds of lesions, we need to
segment the regions of those lesions. Specifically, as described
in Chiu’s method,30 ILM and RPE are the most hyperscattering
layer boundaries in an OCT image, and we can simply find the
two largest gradient values in each B-scan to estimate these two
layer boundaries. As SD-OCT images of the retinal layers may
be distorted due to scan artifacts, we further utilize the second-
order polynomial fitting to smooth the estimated RPE bounda-
ries and obtain an approximately flattened image. After that, we
can generally set the ERM ROIs (20 pixels above and below the
ILM boundary, respectively) and drusen ROIs (20 pixels above
and below the drusen boundary, respectively). In addition, we
can set the edema ROIs as the region between the ERM and
drusen ROIs. Figure 4 shows the ROIs segmentation step in
detail. Note that, before the ROIs segmentation, we also
apply the sparsity-based block matching and 3-D filtering
algorithm38 to reduce the noise of the test OCT image.

2.2 Feature Construction

After the segmentation of the three lesion ROIs, we further
extract the features from these regions and use the features to
achieve a more effective representation of the lesion in ROIs.
Specifically, we adopt the SURF detector33 and BoVW
representation34,35 for the feature extraction. The SURF detects
and describes local features in the input image with 64-

Fig. 3 Examples of OCT B-scans with (a) ERM: a hyperreflective band adhere to or partly separated from
the inner surface of the macula; (b) edema: retinal thickness increase with black blob-like fluid; (c) drusen:
granular hyperreflective deposits situate between the RPE and Bruch’s membrane, causing the RPE to
appear irregular, thinner, and disrupted; (d) combination of ERM and edema; (e) combination of ERM and
drusen; and (f) combination of ERM, edema, and drusen.

Fig. 4 Illustration of the ROIs segmentation process.
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dimensional feature vector for each key point [see Fig. (5)]. As
the total amount of local descriptors might be very large and will
create very high computational cost, we further use the BoVW
method to obtain a reduced representation of the local SURF
detectors. The BoVW method clusters (e.g., k-means39) and
quantizes local descriptors into visual words by vocabulary cod-
ing (e.g., vector quantization40), which represents the local
descriptors as a vector of occurrence counts of words. This
can greatly decrease the amount of descriptors and enable the
features to be more discriminative. In this way, each lesion
region is represented by an effective feature vector.

2.3 Detector Construction and Regions of Interests
Labeling

For multilesions recognition, each OCT image will be assigned
with three lesion labels: ERM, edema, and drusen. Note that we
have assumed that each instance is associated with only a single
label in the previous section (e.g., region ERM is associated with
label ERM). Therefore, predicting the class labels of each lesion
can be achieved by separately applying the SVM algorithm41,42

on the feature vectors from each lesion ROIs. The SVM con-
structs an optimal hyperplane between two classes by following
the maximized margin criterion, and its decision function can be
expressed as

EQ-TARGET;temp:intralink-;e001;63;343fðxÞ ¼ sign

�XN
i

yiαiKðx; xiÞ þ b

�
; ∀ i ¼ 1;2; : : : ; N;

(1)

where xi ∈ Rd is the training features from data space X, yi ∈
fþ1;−1g is the label of xi, and αi and b represent the param-
eters of the hyperplane. The kernel function type might affect
the performance of the SVM classifier. In this work, we
adopt the Gaussian or radial basis function kernel, which is
defined as

EQ-TARGET;temp:intralink-;e002;63;214Kðx; yÞ ¼ expð−γkx − yk2Þ: (2)

The functions map the samples from the input space to a
higher dimensional space, in which the same samples are
very easy to be separable.

The final labelset of the OCT image (object) is the aggrega-
tion of all region labels. If all three lesions were not identified,
the B-scan is considered to be the normal one.

3 Results

3.1 Dataset

The proposed MIML-LR method was trained and evaluated on
the datasets acquired from 86 subjects, where 66 subjects had
ocular diseases and 20 subjects had normal eyes. All SD-OCT
volumes were obtained using the Spectralis OCT (Heidelberg
Engineering, Heidelberg, Germany) at the First Affiliated
Hospital of Hunan University of Chinese Medicine (HUCM),
and each volume contains 31 B-scans of size 496 × 768. The
study complied with the Declaration of Helsinki, and informed
consent was obtained from all participants.

As each B-scan from the OCT volume was acquired from
different positions of the retina, it may contain different combi-
nations of lesions. Therefore, instead of examining the lesions at
the volume (human subject) level, we aim to detect the numbers
and types of lesion for each OCT B-scan. In our experiments,
two expert-graded ophthalmologists independently identified
the presence or absence of lesions, including the ERM,
edema, and drusen, in each B-scan, and B-scans with the
same lesion labels from the two experts were collected for
the training and testing. The numbers of B-scans with ocular
disease and normal category are tabulated in Table 1. The
final collected OCT image datasets consist of 823 labeled
images, where 289 scans have ERM, 215 scans have edema,
182 scans have drusen, and 320 scans are from normal macular.
In Table 2, we list the number of B-scans and subjects with dif-
ferent types of lesions. Here, for the category of subject, if at
least one scan from the OCT volume of that subject has one
kind of lesion, the subject is given the corresponding lesion
label. As can be observed in Table 2, ERM often co-occurs
with edema and drusen. Figure 3 shows some examples of
OCT B-scans with different kinds of lesions in our dataset.

3.2 Experimental Setting

To evaluate the performance of the proposed MIML-LR lesion
recognition algorithm, our experiment was performed in a K-
fold cross-validation scheme at the subject level, which means
that all B-scans from one subject are used as either the training

Fig. 5 Illustration of SURF feature extraction in each region.

Table 1 Number of B-scans and subjects with normal eye and ocular
diseases used in our experiments.

Statistics Normal Ocular diseases

B-scan 320 503

Subject 20 66
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set or the testing set. In the K-fold cross-validation scheme, the
whole dataset at the subject level is randomly partitioned into
K equal size subsets, where a single fold is used for the testing,
whereas the remaining K-1 folds are used as the training set. K
repeated runs are conducted to ensure each subset is tested
exactly once, and the classification accuracy is then averaged
over all K experiments to avoid any introduced bias.

Multiple LR performances are evaluated by calculating
three commonly used multilabel evaluation metrics: subset
accuracy, which is defined as the rate that the image of all
four labels is classified correctly; recall, which is defined as
the fraction of predicted correct labels of the actual labels;
and precision, which is defined as the proportion of labels cor-
rectly classified of the predicted positive labels.43 In our
experiments, three independent SVM classifiers associated
with lesions labels (ERM/non-ERM, edema/nonedema, and
drusen/nondrusen) are applied to three image regions, respec-
tively. Note that the detection of a normal or abnormal label
depends on the result of three lesion detectors; if all three
lesions were not identified, the B-scan is considered to be
the normal one. The proposed algorithm has been implemented
in the MATLAB environment on a desktop computer with
Core i5-5200 CPU, 2.2 GHz, and 4 GB RAM.

3.3 Multiple Lesions Recognition Performance

To achieve a more reliable assessment of the proposed method,
the data splitting procedure was repeated five times, with the
mean, standard deviation, and maximum value of 5 accuracies
to be calculated. Note that differences in the sizes of image
regions and tissue characteristics may require visual dictionaries
of different sizes to achieve the best representation. Here, we set
vocabulary size to 1500 for ERM detection, 2000 for edema,
and 1500 for drusen, according to the sizes of corresponding
ROIs, because a larger region (e.g., edema) has larger variations,
thus requiring more words for better representation. The effect
of different split value K is shown in Table 3. As can be seen, as
the K value increases, which means more training samples are
used, the overall performance will increase. Under the 10-fold
cross validation, the proposed algorithm can deliver the best
multilesions recognition performance with the average accuracy
of 88.72%. As our method is based on three independent clas-
sifiers corresponding to the ERM, ME, and drusen, Table 4 also
reports the results of detecting the three lesions and normal con-
dition under the 10-fold cross validations. The performance is
evaluated by the following metrics: accuracy, precision, sensi-
tivity, and specificity. Accuracy is the fraction of predictions
that are true. Precision is the fraction of predicted positives
that are correct. Sensitivity measures the proportion of actual
positives that are correctly identified. Specificity measures
the proportion of actual negatives that are correctly identified.
In our experiments, the average recognition time for each B-
scan was 0.25 s. Note that as the classifier training can be an
offline process, it does not need to be considered in the testing
process.

In addition, the MIML-LR algorithm is compared with the
state-of-the-art single-lesion classification algorithm proposed
by Srinivasan et al.20 under B-scans with only one lesion. As
this single-lesion detection method20 can detect only the normal
B-scans and B-scans with only drusen and edema, these single
lesion or normal B-scans (534 B-scans) selected from our whole
datasets are used for the training and testing. We also added a
comparative experiment to verify the significance of the ROIs

Table 2 Number of B-scans and subjects with different types of lesions.

Statistics

Single pathology only Combination of pathologies

ERM Edema Drusen ERMþ edema ERMþ drusen ERMþ edemaþ drusen

B-scan 118 77 137 126 33 12

Subject 23 18 17 25 8 4

Table 3 Multilesions recognition cross-validated results
(mean� standard deviation).

K Subset accuracy (%) Recall (%) Precision (%)

2 83.48� 1.48 88.51� 0.81 89.12� 1.16

3 84.42� 1.36 90.23� 1.09 89.48� 0.92

5 86.36� 1.11 89.14� 1.48 92.22� 1.19

7 86.84� 1.02 90.26� 1.31 93.54� 0.93

10 88.72� 0.84 91.21� 0.53 92.83� 0.74

Table 4 Single-lesion recongnition cross-validated results (mean� standard deviation).

Class Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

ERM 92.21� 0.36 90.89� 1.22 85.02� 2.11 95.32� 1.01

Edema 97.28� 0.42 96.42� 0.89 92.38� 1.52 98.79� 0.49

Drusen 97.83� 0.24 96.51� 0.82 90.32� 0.87 99.02� 0.22

Normal 96.74� 0.58 94.21� 1.22 96.17� 0.92 96.61� 0.88

Journal of Biomedical Optics 066014-5 June 2017 • Vol. 22(6)

Fang et al.: Automatic detection and recognition of multiple macular lesions. . .



segmentation step in the proposed algorithm for single-lesion
identification. Here, the SURF descriptor is applied on the
whole image with a dense sampling, which is called the
SURF-whole method. Table 5 shows the detection results
under the 10-fold condition. As can be seen, our proposed
method delivers higher accuracy than the single-lesion method
and the SURF-whole method. This is because the relationship
between lesion labels and retinal regions is considered (e.g.,
ERM can be seen only on the surface of the ILM layer) in
the proposed MIML-LR method. That is, our clinical-experi-
ence-based adaptive ROIs segmentation algorithm combined
with the feature extraction method, can better describe the mor-
phological structures and capture more meaningful information
of the lesion, thus enabling the detector to obtain a better rec-
ognition performance.

4 Discussion and Conclusions
In this paper, we presented an MIML-LR method for the auto-
matic detection and recognition of multiple lesions in the OCT
B-scans. Unlike the previous single-lesion-based work that
designs a single specific detector for the lesion, the proposed
MIML-LR method extracts multiple instances and constructs
multiple detectors for the lesions. The constructed multiple
detectors can assign labels for the lesions to achieve the recog-
nition of multiple lesions. Our experimental results on clinically
acquired datasets with multiple lesions demonstrate the prom-
ising performance of the proposed method. In addition, even
using the datasets with one single lesion, our proposed method
still outperforms the state-of-the-art single-lesion recognition
method. The proposed method can reduce the workload and

duplication of ophthalmologists in clinical practice and better
assist macular diagnosis and treatment.

Part of the correctly classified and misclassified cases of the
proposed MIML-LRmethod is shown in Fig. 6. For better visual
comparisons, the segmented ROIs for three lesions are covered
with different colors, where the red band corresponds to ERM,
green corresponds to edema, and yellow corresponds to drusen.
As can be observed, shadowing effects of retinal blood vessels
and the curvature of the retina [Fig. 6(d)] may have an adverse
effect on the recognition performance. In addition, our algorithm
also fails to detect some of the minor pathological changes like
mild cases of ERMs [Fig. 6(e)] and microcystic ME [Fig. 6(f)].
Note that, some preprocessing methods (e.g., flattening or con-
trast adjustment) are expected to further solve the above
problems.

This work is a step toward the realization of fully automated
diagnosis of complex eye diseases. In our future work, we will
construct a larger dataset with more types of lesions [e.g., cho-
roidal neovascularization, retinal pigment epithelial dystrophy,
and macular hole (MH)] to train and test our proposed method.
In addition, our proposed method adopts only the typical feature
extraction method (e.g., SURF) and classifier (e.g., SVM).
Other advanced feature extraction methods and classifiers
may also be incorporated into the proposed framework to further
improve the performance.
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Table 5 Algorithm comparison.

Methods Lesion types Number Feature Mean accuracy (%)

Srinivasan et al.20 Edema, drusen, and normal 534 HOG 88.28

SURF-whole Edema, drusen, and normal 534 Dense sampling SURF 90.21

MIML-LR Edema, drusen, and normal 534 ROIs segmentation SURF 95.62

ERM, edema, drusen, and normal 823 88.72

Fig. 6 Example classification results. Correctly classified case: (a) classified as ERM and drusen,
(b) classified as ERM and edema, and (c) classified as normal. Misclassified case: (d) misclassified
as normal, the actual category is drusen; (e) misclassified as edema, the actual category is ERM
and edema; and (f) misclassified as ERM, the actual category is ERM and edema.
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