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Abstract. We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal
optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution
OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when
the original data were subsampled during acquisition. However, the OCT images suffer from the presence
of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed
NWSRmethod merges sparse representations of multiple similar noisy and denoised patches to better estimate
a sparse representation for each patch. First, the sparse representation of each patch is independently com-
puted over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by aver-
aging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches,
combining noisy and denoised patches’ representations is beneficial to obtain a more robust estimate of
the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image
denoising method and our method provides an efficient way to exploit information from noisy and denoised
patches’ representations. The experimental results on denoising and interpolation of spectral domain OCT
images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.3.036011]
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1 Introduction
Optical coherence tomography (OCT) is a noninvasive imaging
modality, which can provide a cross-sectional view (tomogra-
phy) of the tissue structures and has been widely used to identify
and monitor various ophthalmology diseases.1 However, due to
interferometry nature of OCT imaging, the OCT images are
inevitably affected by noise. Also, to avoid motion artifacts from
the fixation eye movements, the OCT clinical images are often
captured at lower than nominal sampling rates.2–6 Therefore,
effective denoising and interpolation algorithms are necessary
for automated or even manual OCT image analysis.

Interpolation and denoising are two of the most well-known
problems in image processing,7 and many methods based on
various image models have been proposed for OCT image
reconstruction.8–19 In general, these methods are mostly
developed for OCT denoising. Although they can be used with
efficient interpolation algorithms, designing a more unified
algorithm that is capable of denoising, and interpolation is
more appealing.5,6,20

Classic interpolation algorithms produce unsatisfying results
when the low-resolution image is noisy and they cannot recover
features that are missed in the input noisy image itself.4–6,20

Multiframe interpolation methods seems more plausible since

they benefit from more information provided by multiple
images.2 However, they need motion estimation from images,
which is prone to error even for noise-free images.8,10,13,14,21,22

Example-based learning interpolation can exploit the infor-
mation from a dataset of paired training images. The early
approaches are based on finding the nearest neighbors in a
large dataset consisting of low-resolution (LR) and high-resolu-
tion (HR) patch pairs.21 Despite promising results that have
been presented, this approach is computationally intensive
and the search for nearest neighbors may be negatively affected
by noise. These shortcomings can be mitigated using sparse
models.23–27 Thus, several researchers have used sparse repre-
sentation and closely related compressed sensing methods to
reconstruct OCT data.2–6,28–30

Recently, Fang et al.5,6 have tried to denoise and interpolate
spectral domain OCT (SDOCT) images by proposing a fast
coupled dictionary learning (DL) approach. Basically, this
approach is based on the idea of shared sparse representations
between LR and HR patches.24,31 However, learning coupled
dictionaries in presence of noise can mislead estimating sup-
ports or coefficient values in sparse representation stage.20,32

Therefore, sophisticated regularizers are needed with the cost
of higher computational complexity.20 An alternative way is
based on using sparse representation of the degraded patch
itself. Several researchers have exploited this idea, along with
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nonlocal redundancy in natural images.25,33–36 To interpolate
a natural image with sparse nonlocal models, learning one
model for each subspace through clustering has been shown
promising results,25,33,36 but clustering highly noisy OCT
image patches is not easy and inconsistency between LR and
HR clusters negatively affects the reconstruction quality.6 To
tackle with heavier and more realistic noise, two interpolation
methods based on the well-known block-matching and 3D
filtering (BM3D) sparse representation model are recently
introduced.37,38 Although the reconstruction results are excel-
lent, these methods use internal BM3D dictionaries that are
learned from the corrupted image itself. Therefore, it would
be hard to recover details that are lost in the LR image itself.

In this paper, we propose a nonlocal weighted sparse
representation (NWSR) to denoise or interpolate a single
cross-sectional SDOCT image (also called B-scan). We learn an
overcomplete dictionary from an external dataset of SDOCT
images and use the learned dictionary in our reconstruction algo-
rithm to enhance the spatial resolution of an input image. Two
cues have been used to better estimate sparse representation of
an unknown HR patch from noisy LR patches. First, inspired by
sparse nonlocal models,33–35 we incorporate self-similarity
information to obtain a representation for each patch by averag-
ing sparse representations of nonlocal similar patches over an
overcomplete dictionary. The sparse representation of each
patch is computed independently, and then a weighted sparse
coefficient is computed, where weights are determined by
the similarity between patches.39 Second, promising results
have been shown recently by combining information that are
extracted from noisy image and the result of an off-the-shelf
denoising method.40 Sparse representation can identify relevant
information from noisy image patches while suppressing noise.
Therefore, we combine noisy and denoised patches’ represen-
tations to calculate nonlocal weighed sparse coefficients. This
results in a more robust estimate of the HR patch representation,
which is later used for denoising or interpolation of SDOCT
images.

The rest of the paper is organized as follows. In Sec. 2, we
briefly review the sparse representation-based denoising model
and interpolation model. In Sec. 3, we introduce the proposed
NWSR method for the denoising and interpolation of OCT
images. Experimental results on clinical OCT data are shown
in Sec. 4. The conclusion and future works are presented in Sec. 5.

2 Related Works

2.1 Sparse Representation-Based Denoising

The sparse representation assumes that most signals of interest
can be estimated using a linear combination of a few (sparse)
elements from a set of basis functions (atoms) that is called
a dictionary.23 Ideally, in the sparse model, corruptions such
as noise cannot be well represented sparsely, thus finding
the sparse representation of a corrupted signal over a suitable
dictionary helps to restore it. To exploit the sparse model,
a corrupted image Y is divided into overlapping small patches.
Each patch Yi ∈ Rp1×p2 is converted to a column vector
yi ∈ Rn¼p1p2 by lexicographic ordering.41 To avoid numerical
instabilities of computing sparse representation, the mean inten-
sity value of each patch is often subtracted from its pixel
values.35 Then, the vector yi is represented sparsely by a coef-
ficient vector αi ∈ Rk over a dictionary matrix D ∈ Rn×k by
solving the following problem:

EQ-TARGET;temp:intralink-;e001;326;752min
αi

kyi −Dαik22; s:t: kαik0 < t; (1)

where k:k0 is the L0 pseudonorm that counts the number of non-
zero elements (support) in the coefficient vector αi. The constant
t is the sparsity level. Assuming that we have an overcomplete
dictionary D with k ≫ n; A pursuit algorithms such as orthogo-
nal matching pursuit (OMP)23 can be used to approximately
solve Eq. (1) such that xi ≈Dαi. After adding the removed
mean intensity to each estimate Dαi, it could be interpreted as
a restored version of Yi. The dictionary D can be constructed20

or learned from a dataset of image patches; however, it is more
desirable to learn the dictionary, because it leads to a more
compact one which speeds up the computation of sparse
representations.24,25,41

2.2 Sparse Representation-Based Interpolation

An instance of interpolation problem can be formulated as
follows: denote an original HR image as X ∈ Rr×c, the down-
sample operator as S, and the subsampled LR image as
Z ¼ SX ∈ Rðr\sÞ×ðc\sÞ. Given a subsampled observed image Z,
the goal of any image interpolation method is to estimate X
by Ẑ such that Ẑ ∼ X. To solve this problem with a patch-
based sparse model, we need a way to estimate the latent sparse
representation of an HR patch from the observed LR patch.

Two main strategies have been used in different methods for
this estimation: (1) estimating the sparse representation of an
HR patch via the remaining pixels, i.e., only the observed pixels
in the given LR patch and (2) estimating the sparse representa-
tion of an HR patch by assuming that the sparse representation
of the LR patch and its corresponding HR one are similar over a
couple of dictionaries, i.e., ðDL;DHÞ where DL is the LR dic-
tionary and DH is the HR dictionary. The second was pioneered
by Yang et al.24,31 However, as mentioned earlier, learning
coupled dictionaries in the presence of noise are not easy.32

The first strategy needs one dictionary. At first, rows of the
dictionary D that are corresponding to the missing pixels in
a given patch yi are removed by applying a suitable matrix on
the dictionary D 0

i ¼ UiD. The columns of D 0
i are usually nor-

malized to unit one. Then, the sparse representation αi of an
image patch zi can be found over this new dictionary by solving

EQ-TARGET;temp:intralink-;e002;326;298min
αi

kz 0i −D 0
iαik22 s:t: kαik0 < t; (2)

where z 0i ¼ Uizi is a vector corresponding to the observed pixels
of the patch zi, and the HR patch xi is reconstructed by
xi ∼ x̂i ¼ Dαi.

3 Proposed NWSR Method for OCT Image
Denoising and Interpolation

Given an observed SDOCT image Y, we want to estimate
a denoised HR image X based on Y. When Y and X have
the same spatial resolution, i.e., X;Y ∈ Rr×c the problem is
denoising. Following,5,6 a spatially subsampled noisy SDOCT
image has fewer columns and we can formulate it as Z ¼
SY ∈ Rr×ðc\sÞ where S is the column downsampler. Thus, to
infer the contents of the denoised HR image X from the
noisy image Y or the noisy downsampled image Z; a dictionary
and an image reconstruction algorithm are required.

Journal of Biomedical Optics 036011-2 March 2018 • Vol. 23(3)

Abbasi et al.: Optical coherence tomography retinal image reconstruction via nonlocal. . .



3.1 Dictionary Learning

To learn a dictionary, we need high signal-to-noise ratio (SNR)
SDOCT images that are acquired in works.5,16 In the training
part of their dataset, there are 10 high-SNR-high-resolution
(HH) images. We use these images and extract N overlapping
patches of size p1 × p2 pixels. For each patch Xi ∈ Rp1×p2 , as
described in Sec. 2.1, we convert it to a vector xi ∈ Rn¼p1p2 and
remove the mean of its pixels intensity. Then, we solve the
following DL problem to learn an overcomplete dictionary
D ∈ Rn×K:

EQ-TARGET;temp:intralink-;e003;63;635min
D;αi

kαik0 s:t:
XN
i¼1

kDαi − xik2 ≤ ϵ: (3)

In Eq. (3), the representation error ϵ is set to be σg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 × p2

p
for all patches,42 where σ indicates the level of noise in the train-
ing data, and g is a predefined constant, which is called noise
gain. We used efficient implementation of K-SVD and batch-
OMP algorithm, which is specifically optimized for calculating
sparse representations of large sets of signals over a dictionary.43

3.2 Image Reconstruction

Supposing that a noisy LR image Z is fed to the algorithm as the
input image, we densely extract overlapping patches of size
p1 × p2 from the input image. Then, each patch is processed
with our reconstruction algorithm that mainly comprises three
steps: (1) for each patch, find similar patches with the help
of corresponding patches that are extracted from a denoised
version of an input image, (2) compute nonlocal weighted sparse
coefficients over the learned dictionary, and (3) reconstruct
the whole image by aggregating overlapping estimates. The
schematic diagram of our algorithm is shown in Fig. 1 and
each step will be described in more detail in the following
subsections.

3.2.1 Finding similar patches

Given a patch from the observed image Z, we want to find sim-
ilar patches for it. To compare patches, the Euclidean distance
can be used; but this distance on the noisy patches is prone to
overfitting the noise and return irrelevant results.44 Therefore,
we use an off-the-shelf denoising algorithm to reduce the
amount of noise in Z. Though any denoising algorithms can
be used, we apply an implementation of the nonlocal mean
(NLM) filtering, which is provided by Ref. 5.

Concretely, to find K similar patches for a given noisy patch
zi, i ¼ 1; : : : ;M; we use the corresponding denoised patch ẑi
extracted from the denoised image Ẑ. Then, we extract L
patches around it, which are in the same row and retrieve the
indices of K most similar patches (including the patch itself).
The distance is computed as

EQ-TARGET;temp:intralink-;e004;326;580di;j ¼ ðUiẑi − UiẑjÞTðUiẑi − UiẑjÞ; where j ∈ Ri: (4)

In Eq. (4), the matrix Ui extracts the observed pixels from ẑi
and ẑj, respectively. The set Ri denotes the indices of patches
that have missing values in the same locations as the given patch
ẑi in the neighborhood of size L. Note that, if the patches have
different locations of missing values, the sparse representation
stage will try to capture information that are relevant for recon-
structing those values. Therefore, it may contribute wrongly for
the computation of the sparse representation of the current patch
in process.

3.2.2 Computing nonlocal weighted sparse coefficients

GivenK similar patches for each degraded patch zi, we combine
information from them to obtain a better estimation of sparse
representation of the corresponding HR patch. First, we inde-
pendently compute sparse representation of the patch zi and
its similar denoised patches using Eq. (2). Let us indicate the
set containing sparse representations of K patches for the i’th

Fig. 1 A schematic diagram of the proposed NWSR method.
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patch as Si ¼ fαi;1; : : : ; αi;Kg. Next, a nonlocal weighted sparse
coefficient is computed using

EQ-TARGET;temp:intralink-;e005;63;730αi ¼
XK
j¼1

αi;jpi;j: (5)

In this equation, pi;j is the probability associated with the
sparse representation of the j’th patch in the set Si. We assign
the probabilities by considering the degree of similarity between
the given patch and its similar ones.39 To this end, we use the
distance between patches di;j that are computed in the previous
section [Eq. (4)] to define a weight for each patch

EQ-TARGET;temp:intralink-;e006;63;617wi:j ¼ e−
di:j

2h2 : (6)

Obviously, the maximum weight is assigned to the sparse
representation of the given patch (zi). The parameter h is a con-
stant that controls the amount of deviation from the i’th patch. If
it is set to a very small value, the patches must be very similar to
the i’th patch to have a significant weight. Equation (7) converts
the weights into probabilities and ensures that the probabilities
sum to one

EQ-TARGET;temp:intralink-;e007;63;507pi:j ¼
wi;jPk
j¼1 wi;j

: (7)

After computing nonlocal weighted sparse coefficients αi for
each patch zi, we can denoise and interpolate it by Dαi (Fig. 1).

The effect of the proposed NWSR method for image
reconstruction is shown in Fig. 2. In the next step, we restore
the mean of the patches that were removed during sparse rep-
resentations, and then merge the patches to reconstruct a whole
denoised HR image.

3.2.3 Reconstructing the whole image

Let us indicate the estimation of the i’th patch with x̂i ¼ Dᾱi.
This estimation lacks the mean of intensities for each patch as it
was removed in the sparse representation stage. One way to
restore the mean is to use the mean of the remaining pixels
in each patch.42 A better way is to use the mean of the corre-
sponding denoised patch.5 As we exploit sparse representations
of multiple patches to obtain nonlocal weighted sparse coeffi-
cients for each patch, it is natural to expect that the mean
can also be recovered in a similar weighted fashion. We compute
the mean intensity for the i’th patch by

EQ-TARGET;temp:intralink-;e008;326;557mi ¼ Σjmjpj: (8)

Then, the mean intensity is added to the estimation by

EQ-TARGET;temp:intralink-;e009;326;515x̂i ¼ Dαi þmi: (9)

The whole procedure of restoring each patch is briefly
described in Fig. 3. After restoring each patch, we have multiple
estimates for each pixel. A common method to form a complete
image from a patch-based processing method is to average these
estimates by 41

EQ-TARGET;temp:intralink-;e010;326;429x̂ ¼ W

�XM
i¼1

RT
i x̂i

�
where; W ¼

�XM
i¼1

RT
i Ri

�−1

: (10)

In Eq. (10), RT
i x̂i places the i’th estimated patch in the appro-

priate place. The diagonal matrix W contains the weights asso-
ciated with each pixel based on the number of overlapping
patches that reconstruct it. The vector x̂ is the recovered image.

4 Experimental Results
In this section, we present some experimental results of the pro-
posed NWSR method for both interpolation and denoising
problems. The datasets, parameters, and quantitative image
reconstruction metrics are explained. Then, the method is
compared quantitatively and qualitatively with other competing
methods. The source code of our proposed NWSR method will
be released on the website (https://github.com/ashkan-abbasi66).

4.1 Datasets

We use datasets that were originally introduced by Ref. 5, and
it is available in Ref. 45. The images were all captured by
Bioptigen SDOCT imaging systems (Durham, North Carolina).
The first dataset was acquired from the central foveal images of
28 eyes of 28 subjects with and without nonneovascular age
macular degeneration. For each subject, an HH image was pro-
vided by registration of azimuthally repeated B-scan images
from the fovea.5 The dataset was divided randomly into a train-
ing set of 10 subjects and a test set of 18 subjects. The second
dataset consists of really subsampled images with 450 columns
per image. This dataset was acquired with the same imaging
device from 13 human subjects.

Fig. 2 The effect of the proposed NWSR method for denoising
a retinal OCT image. The second column shows a magnified region.
(a), (f) Original noisy image; (b), (g) output without using any similar
patches for computing sparse representation of each patch; (c), (h)
output of the off-the-shelf NLM denoising; (d), (i) output of the pro-
posed NWSR method using five similar patches for each patch to
compute its sparse representation; and (e), (j) registered and aver-
aged images. Note that the denoisng method [(c) and (h)] produces
artifacts and the image is still noisy. The figure is better seen by
zooming on a computer screen.
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4.2 Quantitative Metrics

To assess objective performance of the methods, we use
quantitative metrics that are commonly used in medical image
reconstruction. We adopt the peak signal-to-noise-ratio (PSNR),
mean-to-standard-deviation ratio (MSR),46 contrast-to-noise-
ratio (CNR),47 and equivalent number of looks (ENL).48

The PSNR is a widely used metric that globally measures the
intensity difference between the processed and the reference
image. The other mentioned metrics do not require the reference
image, and their computation requires selecting regions of inter-
est from the images. We compute the MSR by averaging mean
to standard deviation (SD) ratio on foreground regions of
an image (e.g., red box #2-#6 in Fig. 4). The CNR measures
the contrast between foreground regions and background noise
by taking into account not only foreground regions but also
background region (e.g., red box #1 in Fig. 4). The ENL
involves computing mean and SD of background region.
Therefore, it evaluates smoothness in background regions.
Large ENL indicates a stronger noise smoothing in the corre-
sponding region.48

4.3 Compared Methods

We compare the proposed NWSR method quantitatively and
qualitatively with other competing methods from the literature.
The comparison methods for the OCT image denoising include:
K-SVD denoising algorithm,41 BM3D,34 patch group prior-
based denoising (PGPD),49 two-dimensional sparsity-based
simultaneous denoising and interpolation (2-D-SBSDI),5 and
BM4D.50

For the OCT image interpolation problem, the comparison
methods include bicubic, BM3D34 + bicubic, single image
scale-up using sparse representation by Zeyde et al.51 (Zeyde),
2-D-SBSDI,5 and BM4D50 + bicubic. The BM3D/BM4D +
bicubic method is a combination of the BM3D/BM4D denoising
approach and the bicubic interpolation approach.

4.4 Algorithm Parameters

We set most of the parameters of the proposed method NWSR
parameters based on our experiments. The selected parameters
kept unchanged for all images in both interpolation and
denoising experiments. We extract patches of size p1 × p2 ¼
8 × 8 pixels for DL and sparse representation. The smaller
patch sizes have negative effects on the performance of the

proposed method and the bigger ones increase the computa-
tional cost. We will evaluate the effects of the patch size on
the performance of the proposed method in Sec. 4.7. For
each patch, we extract L ¼ 30 patches in the same row and
retrieve K ¼ 6 most similar ones (including the patch itself).
Although a larger search window might further enhance the
reconstruction performance, it has more computational cost.
In Sec. 4.8, we will discuss the effect of the number of retrieved
similar patches (K) on the performance of the proposed
NWSR method. The constant h in the exponential weight
function [Eq. (6)] is set to 80. The sparsity level in the image
reconstruction algorithm [Eq. (2)] is set to 2. To set the repre-
sentation error for DL, we estimate the noise level from the
training HH images by employing the algorithm published
by Ref. 52. The obtained value is σ ¼ 4.6. The noise gain g
is set to 1.65. The procedure terminates in 20 iterations.
Adding more iterations hardly results in any improvement.
The number of dictionary atoms is set to 128. Further
increasing the number of atoms will slightly improve the
performance of reconstruction with the expense of higher
computation time. We initialize the DL algorithm by randomly
selecting patches from the training set. Better initialization
methods can be used to improve the algorithm’s performance,18

but we still use random initialization due to its simplicity. The
patch size for NLM filtering is set to 6 × 6 pixels. Increasing the
NLM filtering patch size results in over smoothing of textured
regions. Instead of removing all of the noise using an NLM
filtering with bigger patch size, we reduce the amount of noise
using this off-the-shelf algorithm. Then, the remaining noise
will be removed by sparse representation. All parameters
involved in the compared methods were optimally assigned or
chosen as described in the reference papers.

4.5 Results for OCT Image Denoising

Figure 4 demonstrates a visual comparison between the pro-
posed NWSR method and compared methods for denoising
of a real retinal OCT test image. As can be seen, the
K-SVD, BM3D, and PGPD significantly suppress the noise
while introducing visual artifacts. The SBSDI further reduces
the artifacts, but it results in a slightly noisy reconstruction.
BM4D can greatly reduce the noise, and it can better preserve
layer structures due to using multiple images for denoising, but
the result exhibits visible artifacts. The proposed NWSRmethod
can effectively reduce noise while preserving many structures,
compared to the HH image. Average quantitative results (over

Fig. 3 The procedure of restoring a patch via NWSR.
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18 foveal images) of all the test methods are reported in Table 1.
According to this table, the quantitative results of the proposed
NWSRmethod are superior to those of the compared methods in
terms of the four quantitative metrics (i.e., MSR, CNR, ENL,
and PSNR). The experiments were conducted on a laptop

with an Intel® Core i7-4702MQ processor and 16 GB of
RAM. On average, denoising an OCT test image of size 450 ×
900 pixels using the proposed NWSRmethod takes about 108 s,
implemented in MATLAB®. We did not optimize the code for
speed, thus there is potential to reduce the average running time.

Fig. 4 Visual comparison of the denoised images by KSVD,41 BM3D,34 PGPD,49 2-D-SBSDI,5 BM4D,50

and the proposed NWSR method.

Table 1 Mean and SD of the MSR, CNR, ENL, and PSNR results for reconstructing 18 foveal images by the test methods.

Metric\method K-SVD41 BM3D34 PGPD49 2-D-SBSDI5 BM4D50 NWSR

MSR Mean 7.53 6.86 7.17 8.2 7.07 8.67

SD 1.26 0.96 1.2 1.09 0.81 1.15

p value 1.91E-06* 9.33E-12* 2.63E-09* 1.28E-06* 2.26E-10*

CNR Mean 3.39 3.21 3.22 3.43 3.31 3.45

SD 0.52 0.45 0.48 0.45 0.44 0.47

p value 1.74E-01 6.04E-07* 1.70E-05* 3.51E-02* 1.25E-06*

ENL Mean 776.24 1228.17 995.42 1539.14 1038.3 1552.68

SD 150.69 511.56 314.31 305.97 262.91 264.07

p value 6.53E-12* 2.85E-03* 8.85E-09* 7.31E-01 1.84E-07*

PSNR Mean 27.00 27.03 26.97 27.53 27.57 27.79

SD 2.41 2.42 2.44 2.28 2.49 2.41

p value 1.26E-04* 1.04E-05* 6.73E-05* 4.28E-06* 2.95E-03*

Note: Best results in the mean values are shown in bold.
*p < 0.05, the metrics for each test method are considered statistically significant.
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4.6 Results for OCT Image Interpolation

Figures 5 and 6 show a visual comparison between the proposed
NWSR method and compared methods for reconstruction of
two real retinal OCT test images from two different datasets.
Figure 5 shows a synthetic subsampled image (with 50%
data missing), its visually reconstructed results, and its corre-
sponding HH image. Figure 6 shows a real subsampled
image (with 50% data missing) and its visually reconstructed
results obtained from all the test methods. As expected, the
results of bicubic and Zeyde are noisy, as we can see in
Figs. 5 and 6. The BM3D + bicubic and BM4D + bicubic
can significantly reduce the noise, but their results are suffered
from visible artifacts. The BM4D + bicubic results in less
artifacts than BM3D + bicubic and better preserves structures.
Similar to denoising experiment, the SBSDI method reduces
the artifacts, but it results in a slightly noisy reconstruction.
The visual evaluation of the proposed NWSR method indicates
good performance of the method in preserving textures and sup-
pressing noise. This can be validated by the average quantitative
results that are reported in Tables 2 and 3. The average quanti-
tative results over 18 synthetic subsampled images from the first
dataset are reported in Table 2. The quantitative results over
39 real subsampled images are reported in Table 3. As can be
observed, the proposed NWSR method provides the best perfor-
mance, except that for the mean of the ENL for reconstructing
the images from the second dataset (Table 3). For this dataset,
the best mean of the ENL is achieved by the 2-D-SBSDI method
due to the fact that it results in a more aggressive background
smoothing. This is also reflected in lower values of other metrics
(i.e., MSR and CNR). On average, interpolating an OCT test

image with 50% data missing using the proposed NWSR
method takes about 85 s. The implementation was the same
as mentioned in Sec. 4.5.

4.7 Effects of Patch Size

To evaluate the effect of patch size on the performance, we vary
this parameter in a certain range and set the other parameters to
the fixed values described in Sec. 4.4. We present the experiment
of reconstructing 18 synthetic subsampled images (with 50%
data missing) described in Sec. 4.6. Figure 7 shows the behavior
of PSNR versus different patch sizes. It can be seen that smaller
patch sizes negatively affect the performance due to the limited
spatial information. As the patch size increases, the method sig-
nificantly suppresses noise but may result in oversmoothing and
the loss of image detail. Consequently, we use the patch size of
p1 × p2 ¼ 8 × 8 pixels for all the experiments in our paper.

4.8 Effects of Number of Similar Patches to
Compute Nonlocal Weighted Sparse
Coefficients

Because our proposed NWSR method relies on sparse represen-
tations of the K most similar patches, we study here the impact
of different values of K on the performance. We reconstruct 18
synthetic subsampled images (with 50% data missing) described
in Sec. 4.6 with different values for K while keeping all other
parameters unchanged. Figure 8 plots the average PSNR over
the test images as a function of K. It can be seen that merging
only a few representations yields benefits. The performance gets
better as K increases. However, it might result in oversmoothing

Fig. 5 Visual comparison of the reconstruction results of a synthetic subsampled retinal OCT test image
(with 50% data missing) using bicubic, BM3D34 + bicubic, Zeyde,51 2-D-SBSDI,5 BM4D50 + bicubic, and
the proposed NWSR method. The figure is better seen by zooming on a computer screen.
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Table 2 Mean and SD of the MSR, CNR, ENL, and PSNR results for reconstructing 18 foveal images (with 50% data missing) by the test
methods.

Metric\method Bicubic BM3D34 + bicubic Zeyde51 2-D-SBSDI5 BM4D50 + bicubic NWSR

MSR Mean 3.44 7.49 5.08 8.75 7.6 10.01

SD 0.29 1.14 0.43 1.13 0.95 1.39

p value 1.88E-13* 6.31E-11* 5.08E-12* 1.56E-08* 2.18E-10*

CNR Mean 1.75 3.36 2.55 3.57 3.45 3.84

SD 0.29 0.5 0.4 0.5 0.49 0.56

p value 1.43E-14* 1.40E-10* 4.21E-13* 3.85E-11* 1.64E-10*

ENL Mean 8.62 1345.01 28.69 1885.33 1096.31 1664.19

SD 1.12 543.74 3.79 545.09 342.14 305.71

p value 4.72E-14* 6.43E-04* 5.22E-14* 7.58E-03* 6.21E-07*

PSNR Mean 18.54 27.26 22.72 27.64 27.76 27.96

SD 0.48 2.44 0.91 2.27 2.52 2.29

p value 1.31E-13* 8.76E-06* 2.00E-11* 3.90E-09* 3.14E-02*

Note: Best results in the mean values are shown in bold.
*p < 0.05, the metrics for each test method are considered statistically significant.

Fig. 6 Visual comparison of the reconstruction results of a real subsampled retinal OCT test image (with
50% data missing) using bicubic, BM3D34 + bicubic, Zeyde,51 2-D-SBSDI,5 BM4D50 + bicubic, and the
proposed NWSR method. The figure is better seen by zooming on a computer screen.
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and the loss of image detail. Therefore, we use K ¼ 6 for all the
experiments in our paper.

5 Conclusion
In this paper, we have presented a competitive method (named
NWSR) capable of denoising and interpolating a cross-sectional

SDOCT image. The proposed NWSR method relies on sparse
representations of multiple noisy and denoised LR patches to
compute a more robust estimate of the HR patch representation.
The experiments showed that merging only a few representa-
tions yields better image reconstruction results. The experimen-
tal results on two datasets of real retinal SDOCT images show
the effectiveness of the proposed NWSR method over several
leading state-of-the-art image reconstruction methods. The pro-
posed NWSR method is useful for OCT image quality improve-
ment, and it might be able to improve the performance of
segmentation algorithms.18,53 However, there are limitations
to this work that need to be addressed in further research efforts.
First, although DL from HH images could provide a way to
estimate the subspace of clean images,5,16 the HH images are
currently not available for other applications of OCT images
(e.g., intravascular OCT images of carotid arteries11). Second,
the proposed NWSR method is a single-image reconstruc-
tion method. Despite its benefits, there is potential to further
improve the reconstruction quality by extending the proposed
NWSR method to multiframe reconstruction. This is because
there are high degrees of spatial correlations between nearby
OCT images. Third, the proposed NWSR method uses fixed
patch size. In order to efficiently capture OCT image structure,
a more effective method might be offered based on adaptive
patch size or shape adaptive patches.54–56 Forth, in future
study, we would like to investigate the incorporation of high-
frequency information into the reconstruction.24 Fifth,
although here we only considered the task of retinal OCT
image reconstruction, the proposed method can also be
applied to reconstruction of other noise-corrupted medical
images.2,20
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Table 3 Mean and SD of the MSR, CNR, and ENL results for reconstructing 39 foveal images (with 50% data missing) by the test methods.

Method

MSR CNR ENL

Mean SD p value Mean SD p value Mean SD p value

Bicubic 3.34 0.17 1.28E-23* 1.67 0.25 3.54E-33* 8.81 0.44 1.49E-33*

BM3D34 + bicubic 6.69 0.91 3.04E-19* 3.08 0.38 2.84E-25* 1857.20 901.89 1.56E-01

Zeyde51 4.86 0.26 7.71E-20* 2.42 0.33 7.58E-29* 29.19 1.40 2.19E-33*

2-D-SBSDI5 7.74 1.34 4.66E-14* 3.25 0.39 7.80E-26* 1914.60 442.58 5.21E-06*

BM4D50 + bicubic 6.86 0.98 3.59E-17* 3.16 0.38 6.33E-22* 1304.11 471.65 1.08E-05*

NWSR 8.62 1.47 3.50 0.43 1675.00 243.26

Note: Best results in the mean values are shown in bold.
*p < 0.05, the metrics for each test method are considered statistically significant.
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Fig. 7 Effects of the patch size on the performance of the proposed
NWSR method. For each patch size, mean of the PSNR results for
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the proposed NWSRmethod. For each value of K , mean of the PSNR
results for reconstructing 18 foveal images (with 50% data missing) is
reported.

Journal of Biomedical Optics 036011-9 March 2018 • Vol. 23(3)

Abbasi et al.: Optical coherence tomography retinal image reconstruction via nonlocal. . .



References
1. M. D. Abramoff, M. K. Garvin, and M. Sonka, “Retinal imaging and

image analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
2. M. D. Robinson et al., “Novel applications of super-resolution in

medical imaging,” in Super-Resolution Imaging, P. Milanfar, Ed.,
pp. 384–412, CRC Press, Boca Raton, Florida (2010).

3. M. Young et al., “Real-time high-speed volumetric imaging using
compressive sampling optical coherence tomography,” Biomed. Opt.
Express 2(9), 2690–2697 (2011).

4. A. Boroomand et al., “Multi-penalty conditional random field approach
to super-resolved reconstruction of optical coherence tomography
images,” Biomed. Opt. Express 4(10), 2032–2050 (2013).

5. L. Fang et al., “Fast acquisition and reconstruction of optical coherence
tomography images via sparse representation,” IEEE Trans. Med.
Imaging 32(11), 2034–2049 (2013).

6. L. Fang et al., “Segmentation based sparse reconstruction of optical
coherence tomography images,” IEEE Trans. Med. Imaging 36(2),
407–421 (2017).

7. P. Milanfar, “A tour of modern image filtering: new insights and
methods, both practical and theoretical,” IEEE Signal Process. Mag.
30(1), 106–128 (2013).

8. S. Chitchian et al., “Retinal optical coherence tomography image
enhancement via shrinkage denoising using double-density dual-tree
complex wavelet transform,” J. Biomed. Opt. 17, 116004 (2012).

9. Y. Du et al., “Speckle reduction in optical coherence tomography
images based on wave atoms,” J. Biomed. Opt. 19, 056007 (2014).

10. L. Bian et al., “Multiframe denoising of high-speed optical coherence
tomography data using interframe and intraframe priors,” J. Biomed.
Opt. 20, 036006 (2015).

11. J. Xu et al., “Wavelet domain compounding for speckle reduction in
optical coherence tomography,” J. Biomed. Opt. 18, 096002 (2013).

12. Z. Amini and H. Rabbani, “Optical coherence tomography image
denoising using Gaussianization transform,” J. Biomed. Opt. 22(8),
086011 (2017).

13. H. Zhang et al., “Speckle reduction in optical coherence tomography by
two-step image registration,” J. Biomed. Opt. 20, 036013 (2015).

14. D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in
optical coherence tomography imaging by affine-motion image registra-
tion,” J. Biomed. Opt. 16, 116026 (2011).

15. H. M. Salinas and D. C. Fernandez, “Comparison of PDE-Based non-
linear diffusion approaches for image enhancement and denoising in
optical coherence tomography,” IEEE Trans. Med. Imaging 26(6),
761–771 (2007).

16. L. Fang et al., “Sparsity based denoising of spectral domain optical
coherence tomography images,” Biomed. Opt. Express 3(5), 927–942
(2012).

17. H. Rabbani, M. Sonka, andM. D. Abramoff, “Optical coherence tomog-
raphy noise reduction using anisotropic local bivariate Gaussian mixture
prior in 3D complex wavelet domain,” Int. J. Biomed. Imaging 2013,
1–23 (2013).

18. R. Kafieh, H. Rabbani, and I. Selesnick, “Three dimensional data-driven
multi scale atomic representation of optical coherence tomography,”
IEEE Trans. Med. Imaging 34(5), 1042–1062 (2015).

19. Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coher-
ence tomography,” IEEE Trans. Med. Imaging 35(6), 1544–1554
(2016).

20. D.-H. Trinh et al., “Novel example-based method for super-resolution
and denoising of medical images,” IEEE Trans. Image Process. 23(4),
1882–1895 (2014).

21. W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-
level vision,” Int. J. Comput. Vision 40(1), 25–47 (2000).

22. M. A. Mayer et al., “Wavelet denoising of multiframe optical coherence
tomography data,” Biomed. Opt. Express 3(3), 572–589 (2012).

23. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions
of systems of equations to sparse modeling of signals and images,”
SIAM Rev. 51(1), 34–81 (2009).

24. J. Yang et al., “Image super-resolution via sparse representation,” IEEE
Trans. Image Process. 19(11), 2861–2873 (2010).

25. W. Dong et al., “Image deblurring and super-resolution by adaptive
sparse domain selection and adaptive regularization,” IEEE Trans.
Image Process. 20(7), 1838–1857 (2011).

26. J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for
color image restoration,” IEEE Trans. Image Process. 17(1), 53–69
(2008).

27. J. Mairal et al., “Discriminative learned dictionaries for local image
analysis,” in IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 1–8 (2008).

28. X. Liu and J. U. Kang, “Compressive SD-OCT: the application of
compressed sensing in spectral domain optical coherence tomography,”
Opt. Express 18(21), 22010–22019 (2010).

29. D. Xu et al., “Modified compressive sensing optical coherence tomog-
raphy with noise reduction,” Opt. Lett. 37(20), 4209–4211 (2012).

30. E. Lebed et al., “Rapid volumetric OCT image acquisition using com-
pressive sampling,” Opt. Express 18(20), 21003–21012 (2010).

31. J. Yang et al., “Coupled dictionary training for image super-resolution,”
IEEE Trans. Image Process. 21(8), 3467–3478 (2012).

32. S. Wang et al., “Semi-coupled dictionary learning with applications to
image super-resolution and photo-sketch synthesis,” in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2216–
2223 (2012).

33. W. Dong et al., “Nonlocally centralized sparse representation for image
restoration,” IEEE Trans. Image Process. 22(4), 1620–1630 (2013).

34. K. Dabov et al., “Image denoising by sparse 3-D transform-domain col-
laborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095
(2007).

35. J. Mairal et al., “Non-local sparse models for image restoration,” in
IEEE Int. Conf. on Computer Vision, pp. 2272–2279 (2009).

36. S. Yang et al., “Multitask dictionary learning and sparse representation
based single-image super-resolution reconstruction,” Neurocomputing
74(17), 3193–3203 (2011).

37. K. Egiazarian and V. Katkovnik, “Single image super-resolution via
BM3D sparse coding,” in European Signal Processing Conf.,
pp. 2849–2853 (2015).

38. C. Cruz et al., “Single image super-resolution based on Wiener filter in
similarity domain,” IEEE Trans. Image Process 27(3), 1376–1389
(2018).

39. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in IEEE Conf. on Computer Vision and Pattern Recogni-
tion, pp. 60–65 (2005).

40. A. Singh, F. Porikli, and N. Ahuja, “Super-resolving noisy images,” in
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2846–
2853 (2014).

41. M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image
Process. 15(12), 3736–3745 (2006).

42. M. Aharon, M. Aharon, and A. Bruckstein, “K-SVD: an algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process. 54(11), 4311–4322 (2006).

43. R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation
of the K-SVD algorithm using batch orthogonal matching pursuit,”
Technical Report, Technion, Department of Computer Science,
Haifa, Israel (2008).

44. I. Mosseri, M. Zontak, and M. Irani, “Combining the power of internal
and external denoising,” in IEEE Int. Conf. on Computational
Photography, pp. 1–9 (2013).

45. Fang et al., “Software and datasets used for fast acquisition and
reconstruction of optical coherence tomography images via sparse rep-
resentation,” 2013, http://people.duke.edu/~sf59/Fang_TMI_2013.htm
(01 January 2018).

46. G. Cincotti, G. Loi, and M. Pappalardo, “Ultrasound medical images
with wavelet packets,” IEEE Trans. Med. Imaging 20(8), 764–771 (2001).

47. P. Bao and L. Zhang, “Noise reduction for magnetic resonance images
via adaptive multiscale products thresholding,” IEEE Trans. Med.
Imaging 22(9), 1089–1099 (2003).

48. A. Pizurica et al., “Multiresolution denoising for optical coherence
tomography: a review and evaluation,” Curr. Med. Imaging Rev.
4(4), 270–284 (2008).

49. J. Xu et al., “Patch group based nonlocal self-similarity prior learning
for image denoising,” in IEEE Int. Conf. on Computer Vision, pp. 244–
252 (2015).

50. M. Maggioni et al., “Nonlocal transform-domain filter for volumetric
data denoising and reconstruction,” IEEE Trans. Image Process. 22(1),
119–133 (2013).

Journal of Biomedical Optics 036011-10 March 2018 • Vol. 23(3)

Abbasi et al.: Optical coherence tomography retinal image reconstruction via nonlocal. . .

https://doi.org/10.1109/RBME.2010.2084567
https://doi.org/10.1364/BOE.2.002690
https://doi.org/10.1364/BOE.2.002690
https://doi.org/10.1364/BOE.4.002032
https://doi.org/10.1109/TMI.2013.2271904
https://doi.org/10.1109/TMI.2013.2271904
https://doi.org/10.1109/TMI.2016.2611503
https://doi.org/10.1109/MSP.2011.2179329
https://doi.org/10.1117/1.JBO.17.11.116004
https://doi.org/10.1117/1.JBO.19.5.056007
https://doi.org/10.1117/1.JBO.20.3.036006
https://doi.org/10.1117/1.JBO.20.3.036006
https://doi.org/10.1117/1.JBO.18.9.096002
https://doi.org/10.1117/1.JBO.22.8.086011
https://doi.org/10.1117/1.JBO.20.3.036013
https://doi.org/10.1117/1.3650240
https://doi.org/10.1109/TMI.2006.887375
https://doi.org/10.1364/BOE.3.000927
https://doi.org/10.1155/2013/417491
https://doi.org/10.1109/TMI.2014.2374354
https://doi.org/10.1109/TMI.2016.2519439
https://doi.org/10.1109/TIP.2014.2308422
https://doi.org/10.1023/A:1026501619075
https://doi.org/10.1364/BOE.3.000572
https://doi.org/10.1137/060657704
https://doi.org/10.1109/TIP.2010.2050625
https://doi.org/10.1109/TIP.2010.2050625
https://doi.org/10.1109/TIP.2011.2108306
https://doi.org/10.1109/TIP.2011.2108306
https://doi.org/10.1109/TIP.2007.911828
https://doi.org/10.1109/CVPR.2008.4587652
https://doi.org/10.1364/OE.18.022010
https://doi.org/10.1364/OL.37.004209
https://doi.org/10.1364/OE.18.021003
https://doi.org/10.1109/TIP.2012.2192127
https://doi.org/10.1109/CVPR.2012.6247930
https://doi.org/10.1109/CVPR.2012.6247930
https://doi.org/10.1109/TIP.2012.2235847
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1109/ICCV.2009.5459452
https://doi.org/10.1016/j.neucom.2011.04.014
https://doi.org/10.1109/TIP.2017.2779265
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/CVPR.2014.364
https://doi.org/10.1109/TIP.2006.881969
https://doi.org/10.1109/TIP.2006.881969
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1109/ICCPhot.2013.6528298
https://doi.org/10.1109/ICCPhot.2013.6528298
http://people.duke.edu/~sf59/Fang_TMI_2013.htm
http://people.duke.edu/~sf59/Fang_TMI_2013.htm
http://people.duke.edu/~sf59/Fang_TMI_2013.htm
http://people.duke.edu/~sf59/Fang_TMI_2013.htm
https://doi.org/10.1109/42.938244
https://doi.org/10.1109/TMI.2003.816958
https://doi.org/10.1109/TMI.2003.816958
https://doi.org/10.2174/157340508786404044
https://doi.org/10.1109/ICCV.2015.36
https://doi.org/10.1109/TIP.2012.2210725


51. R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” Lect. Notes Comput. Sci. 6920, 711–730 (2012).

52. A. Foi, “Noise estimation and removal in MR imaging: the variance-
stabilization approach,” in IEEE Int. Symp. on Biomedical Imaging:
From Nano to Macro, pp. 1809–1814 (2011).

53. L. Fang et al., “Automatic segmentation of nine retinal layer boundaries
in OCT images of non-exudative AMD patients using deep learning and
graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).

54. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Trans. Image Process. 16(2),
349–366 (2007).

55. L. Fang et al., “Hyperspectral image classification via multiple-feature-
based adaptive sparse representation,” IEEE Trans. Instrum. Meas.
66(7), 1646–1657 (2017).

56. L. Fang, H. Zhuo, and S. Li, “Super-resolution of hyperspectral image
via superpixel-based sparse representation,” Neurocomputing 273, 171–
177 (2018).

Ashkan Abbasi received his BS degree in software engineering in
2011 fromHamedan Branch, Islamic Azad University, Hamedan, Iran.
He received his MS degree in artificial intelligence from Isfahan
University, Isfahan, Iran, in 2013. He is currently working toward
his PhD in Isfahan University. From September 2017 to February
2018, he is a visiting student at the Vision and Image Processing
Laboratory of Hunan University in Changsha, China. His research
interests are medical image analysis and machine learning.

Amirhassan Monadjemi received his BS and MSc degrees in com-
puter engineering from Isfahan University of Technology in 1990
and Shiraz University in 1994, respectively. He received his PhD in

computer engineering, pattern recognition, and image processing,
from the University of Bristol, Bristol, England, in 2004. He is now
working as an associate professor at the Department of Artificial
Intelligence, Faculty of Computer Engineering, Isfahan University,
Isfahan, Iran. His research interests include artificial intelligence,
image processing, and neural networks.

Leyuan Fang received his PhD from the College of Electrical and
Information Engineering, Hunan University, Changsha, China, in
2015. From September 2011 to September 2012, he was a visiting
PhD student with the Department of Ophthalmology, Duke University,
Durham, North Carolina, USA, supported by the China Scholarship
Council. From August 2016 to 2017, he was a postdoc researcher
at the Department of Biomedical Engineering, Duke University,
Durham, USA. Since January 2017, he has been an associate pro-
fessor at the College of Electrical and Information Engineering, Hunan
University. His research interests include sparse representation and
deep learning in medical image processing.

Hossein Rabbani received his MS and PhD degrees in bioelectrical
engineering in 2002 and 2008, respectively, from Amirkabir University
of Technology (Tehran Polytechnic). In 2007, he was at Queen’s
University, as a visiting researcher; in 2011 at the University of Iowa
as a postdoctoral research scholar; and from 2013 to 2014 at Duke
University Eye Center as a postdoctoral fellow. He is currently an
associate professor in the Biomedical Engineering Department and
Medical Image and Signal Processing Research Center of Isfahan
University of Medical Sciences. His current research interests include
medical image analysis and modeling, statistical (multidimensional)
signal processing, sparse transforms, and image/video restoration.

Journal of Biomedical Optics 036011-11 March 2018 • Vol. 23(3)

Abbasi et al.: Optical coherence tomography retinal image reconstruction via nonlocal. . .

https://doi.org/10.1007/978-3-642-27413-8
https://doi.org/10.1109/ISBI.2011.5872758
https://doi.org/10.1109/ISBI.2011.5872758
https://doi.org/10.1364/BOE.8.002732
https://doi.org/10.1109/TIP.2006.888330
https://doi.org/10.1109/TIM.2017.2664480
https://doi.org/10.1016/j.neucom.2017.08.019

