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Abstract. The mesh-based Monte Carlo (MMC) algorithm is increasingly used as the gold-standard for
developing new biophotonics modeling techniques in 3-D complex tissues, including both diffusion-based and
various Monte Carlo (MC)-based methods. Compared to multilayered and voxel-based MCs, MMC can utilize
tetrahedral meshes to gain improved anatomical accuracy but also results in higher computational and memory
demands. Previous attempts of accelerating MMC using graphics processing units (GPUs) have yielded limited
performance improvement and are not publicly available. We report a highly efficient MMC—MMCL—using the
OpenCL heterogeneous computing framework and demonstrate a speedup ratio up to 420× compared to state-
of-the-art single-threaded CPU simulations. The MMCL simulator supports almost all advanced features found in
our widely disseminated MMC software, such as support for a dozen of complex source forms, wide-field detec-
tors, boundary reflection, photon replay, and storing a rich set of detected photon information. Furthermore, this
tool supports a wide range of GPUs/CPUs across vendors and is freely available with full source codes and
benchmark suites at http://mcx.space/#mmc. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
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1 Introduction
Modeling photon–tissue interaction accurately and efficiently
is essential for an array of emerging biophotonics applica-
tions, such as diffuse optical tomography (DOT), fluorescence
molecular tomography (FMT), and functional near-infrared
spectroscopy (fNIRS). Due to the complex nature of photon–
tissue interactions, significant effort has been dedicated toward
developing computationally efficient methods that not only
properly consider the underlying physical processes, such as
light scattering, absorption, and emission, but also accurately
model the complex-shaped anatomical boundaries that delineate
tissues.

Over the past decade, Monte Carlo (MC)-based modeling
has seen increasing use, thanks to two recent breakthroughs
in MC algorithm development. The first breakthrough takes ad-
vantage of the parallel computing capability of modern graphics
processing units (GPUs) and dramatically shortens the computa-
tional time by two to three orders of magnitude.1,2 The second
breakthrough allows MC to model complex tissue boundaries
using increasingly sophisticated representations, such as 3-D
voxels,1,3 nonuniform grids, and triangular4 and tetrahedral
meshes.5,6 Combined with the generality and intuitive domain
settings, these new advances have made MC not only a choice
for gold-standard solutions, but also a powerful research tool
increasingly involved in routine optical data processing and
instrument parameter optimizations.

Nearly a decade ago, our group proposed one of the first
mesh-based MC (MMC) methods.6 Compared with the tradi-
tional voxel-based MC, MMC reports better accuracy because
meshes are more anatomically accurate in modeling arbitrarily
shaped 3-D tissues, which are often delineated by curved

boundaries. Since then, a number of works have been published
to further extend MMC for faster and more accurate simulations.
In several works,7,8 the ray-tracing calculation and random num-
ber generation were vectorized and ported to single-instruction
multiple-data (SIMD). This data level parallelism significantly
improves the simulation speed on modern CPUs. Yao et al.9

reported a generalized MMC to efficiently support wide-field
illumination and camera-based detection. In Ref. 10, a dual-grid
MMC (DMMC), where a coarsely tessellated mesh and a fine
grid are used for ray-tracing and output storage, respectively,
managed to enhance both performance and solution accuracy.
Leino et al.11 developed an open-source MMC software which
incorporates MATLAB interface for improved usability.

Despite the steadily growing user community, a highly effi-
cient GPU-accelerated MMC implementation remains missing.
Although there has been a number of attempts to accelerate
MMC using GPU computing, only limited success has been
reported. For example, Powell and Leung12 reported a CUDA-
based GPU-MMC for acoustic-optics modeling. The authors
reported that, in the context of different application focuses,
an ∼8× speedup was achieved when comparing their GPU algo-
rithm with our single-threaded MMC simulation. In another
work, Zoller et al.13 reported a GPU-based MMC (MCtet) to
model anisotropic light propagation in aligned structures.
Unfortunately, the software codes in both works are not publicly
available to allow further testing or comparison. Although these
results are encouraging, compared to highly accelerated voxel-
based MC,1,14 the lower magnitude in speedup presents an
opportunity for further improvement.

The difficulties of accelerating MMC in modern GPU pro-
cessors are associated with both the computation and memory
characteristics of MMC photon modeling. Compared to voxel-
and layer-based MC algorithms, MMC requires more geometric
data (mesh nodes, elements, and surfaces) to advance a photon*Address all correspondence to Qianqian Fang, E-mail: q.fang@neu.edu
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per propagation step. Because GPUs typically have scarce high-
speed shared memory and constant memory,15,16 the memory
latency becomes a major barrier toward allowing MMC to ben-
efit from the parallel hardware. Also the ray-tracing calculations
in MMC involve more complex tests to calculate ray-triangle
intersections within the enclosing tetrahedra. This imposes
higher computational demands compared to MC models that
only handle simple geometries.

Here we report a highly accelerated MMC implementation,
MMCL, developed using the Open Computing Language
(OpenCL) framework. MMCL supports almost all advanced
simulation features seen in our open-source CPU MMC, such
as the support of wide-field complex sources and detectors,9 pho-
ton replay,17 dual-grid simulations,10 and storage capabilities for
rich sets of detected photon data. Thanks to the excellent port-
ability of OpenCL, the MMCL is capable of running on a
wide range of commodity GPUs. From our tests, MMCL has
shown about two orders of magnitude speedup compared to our
highly optimized single-thread CPU implementation. Although
we recognize the twofold to fivefold speed disadvantage for
OpenCL compared to CUDA on NVIDIA hardware, as shown
in our previous study,14 in this work, our decision of prioritizing
the development of OpenCLMMC is largelymotivated by (1) the
open-source ecosystem of OpenCL allowing the developed soft-
ware to be rapidly and widely disseminated through public soft-
ware repositories and (2) the upcoming high-performance GPUs
from Intel and Advanced Micro Devices (AMD) being expected
to attract more development attention to OpenCL libraries and
drivers, likely resulting in boosts in performance.

In the following sections, we will first discuss the key
algorithm steps and optimizations that enable high-throughput
MC simulations, and then report our validation and speed
benchmarks using simulation domains covering a wide range
of complexities and optical properties. Finally, we discuss our
plans to further develop this technique.

2 Methods

2.1 GPU-Accelerated Photon Propagation in
Tetrahedral Meshes

As we discussed previously,7 at the core of MC light transport
modeling is a ray-tracing algorithm that propagates photons
through complex media. In our publicly available MMC
software,6 we have implemented four different ray tracers to
advance photons from one tetrahedron to the next. These ray
tracers are based on (1) the Plücker coordinates,6 (2) a fast
SIMD-based ray tracer,7 (3) a Badouel ray-tracing algorithm,5,18

and (4) an SIMD-based branchless-Badouel ray tracer.19 As we
demonstrated before,7 the branchless-Badouel ray-tracing algo-
rithm reported the best performance among the above methods;
it also requires the least amount of memory and computing
resources. For these reasons, we specifically choose the branch-
less-Badouel ray tracer in this work.

In our CPU-based MMC software, we explored SIMD
parallelism using SIMD Extensions 4 (SSE4).7 In this work,
we ported our manually tuned SSE4 computation to OpenCL,
resulting in both improved code readability and efficiency.
The ray-tracing calculation in our GPU MMC algorithm can be
represented by the following five-step four-component-vector
operations:

EQ-TARGET;temp:intralink-;e001;63;89

~S ¼ vx · ~Nx þ vy · ~Ny þ vz · ~Nz; (1)

EQ-TARGET;temp:intralink-;e002;326;741

~T ¼ ~D − ðpx · ~Nx þ py · ~Ny þ pz · ~NzÞ; (2)

EQ-TARGET;temp:intralink-;e003;326;717

~T ¼ maxð~T; ~0Þ∕~S; (3)

EQ-TARGET;temp:intralink-;e004;326;693

~T ¼ ð~S > ~0Þ × ~T þ ð~S ≤ ~0Þ ×∞; (4)

EQ-TARGET;temp:intralink-;e005;326;669t ¼ hminð~TÞ; (5)

where ×, /, and max are element-wise multiplication, division,
and maximum value, respectively; ~v ¼ ðvx; vy; vzÞ and ~p ¼
ðpx; py; pzÞ are the current photon direction and position, re-

spectively; ~Nx;y;z denotes the x∕y∕z components (four elements

in each vector) of the surface normal vectors ~Ni (i ¼ 1;2; 3;4) at

the four facets of the current tetrahedron; ~D ¼ ðdiÞi¼1;2;3;4 is

computed by di ¼ ~P0
i · ~Ni, where the 3-D position ~P0

i can be

any node of the i’th face as the dot product with ~Ni is a constant

per face;18 ~0 is an all-zero vector; and hmin performs the “hori-
zontal” minimum to extract the lowest value from the ~T vector.

Both ~Nx;y;z and ~D are precomputed. Vectors ~T and ~S in Eqs. (1)

to (4) are intermediate variables, and ~T in Eq. (5) denotes the
distances from ~p to the intersection points of the four facets
of the current tetrahedron (intersections in the −~v direction are

ignored). The index in ~T where the distance has the lowest
value, i.e., t in Eq. (5), indicates the triangle that the ray inter-
sects first. Notice that above calculations consist of only short-
vector (three or four elements) operations with no branching.
Such calculations can be efficiently optimized on the modern
GPUs or CPUs, resulting in high computational throughput.

The above vectored formulation is also illustrated in Fig. 1.
The “photon ray” with origin ~p and direction ~v intersects with
the four facets at four distances ti: a positive distance indicates
intersection in the forward direction and a negative distance
indicates an intersection in the −~v direction. The task of finding
the intersection point becomes finding the minimum positive
distance in ~T ¼ ðtiÞi¼1;2;3;4. This is efficiently achieved by first-
replacing all negative values in ~T by þ∞ in Eq. (4) and then
taking a horizontal minimum in Eq. (5).
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Fig. 1 Illustration of a ray-tetrahedron intersection testing using the
branchless Badouel algorithm. ~T ¼ ðt i Þi¼1;2;3;4 records the signed dis-
tances from the current position ~p to the four facets of the tetrahedron
along the current direction ~v . A negative distance means intersecting
in the −~v direction (such as t2 and t3).
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The above MMCL algorithm readily supports a variety of
wide-field sources and detectors via our mesh retesselation
approach.9 By storing various photon-packet related parameters,
such as partial-pathlength, scattering event count, and momentum
transfer, MMCL is also capable of exporting a rich set of detected
photon information, similar to its CPU counterpart. Our previ-
ously developed “photon replay” approach17 for constructing the
Jacobian matrix is also implemented in this OpenCL code.

2.2 Dual-Grid MMC GPU Optimization

Recently, we reported a significantly improvedMMC algorithm,
the dual-grid MMC (DMMC),10 combining the strengths of both
voxel- and mesh-based simulations. It reduces the ray-tracing
overhead significantly by utilizing a coarse tessellation of the
surface nodes without losing anatomical accuracy while a dense
voxelated storage grid provides higher spatial resolution and
lower discretization error. In this work, we have successfully
ported the DMMC algorithm from SIMD to an OpenCL-based
computing model. The outputs are written in a voxelated grid in
the GPU/CPU, similar to our voxel-based MC methods.14 To
reduce global memory operations, we only write to memory
when a photon packet attempts to move out of a voxel in the
output grid.

2.3 GPU Memory Characterization and Optimization

Compared to voxel-based Monte Carlo algorithms, MMC has
different memory characteristics. These can greatly impact the
computational efficiency on GPUs because high-speed memory
is limited on GPUs. To advance a photon packet by one step in
a tetrahedral mesh, MMC requires reading more geometric data,
including node coordinates, node indices of the current element,
and normal vectors of the tetrahedron facets. Although most of
these data can be precomputed on the host (CPU) and copied to
the GPU, such data are too big to be stored into the high-speed
shared or constant memory. Therefore, one has to store the bulk
of the mesh data in the “global memory”which is known to have
high latency (roughly 100× slower than the shared memory).16

It is important to minimize such latency for an efficient GPU
MMC implementation.

The key to overcoming this memory latency issue on the
GPU is to launch a large number of threads and ensure that the
GPU streaming multiprocessors (SMs) have abundant active
thread-blocks (divided into “warps” in the NVIDIA literature
and “wavefronts” in OpenCL literature). Therefore, while some
of the threads wait for data from the global memory, the GPU
scheduler can switch on other threads and keep the SMs busy.
When there are sufficient wavefronts in the waiting queue, the
global memory latency can effectively be hidden. Typically,
a minimum of 10 to 20 wavefronts per SM is required15,16 to
effectively hide the memory latency on the NVIDIA and AMD
GPUs. However, the maximum wavefronts per SM are strongly
dependent on how the kernel is programed, especially in regards
to the number of registers and size of shared memory as SMs
have only limited resources and must share them among all
active wavefronts. As a result, the key to accelerate the GPU-
based MMC is to (1) launch a large number of threads that pro-
duce sufficiently large waiting queues per SM and (2) minimize
the register/shared memory needs per thread so that many wave-
fronts can simultaneously run on the SM. Following these
insights, we are able to dramatically improve the simulation
speed on tested GPU devices, independent of its vendors.

2.4 Simulations on Heterogeneous Computing
Platforms

As discussed in our previous investigation,14 the high scalability
of OpenCL permits simultaneous use of multiple computing
devices. This includes both simultaneous use of different gen-
erations of GPU architecture and mixed use of both GPUs and
CPUs. In such a heterogeneous computing environment, it is
crucial to ensure that the simulation algorithm has a flexible
workload distribution strategy to assign appropriate workload
to each GPU device according to their capabilities.

Several device-level load-balancing strategies have been
implemented in this work. A manual workload distribution can
be specified by a user. The manual workload partition can be
guided using relative speeds obtained from a small workload
running on each device. In addition, we also provide a heuristic
method to automatically determine an effective workload parti-
tion according to the persistent thread (PT)20 count on each
invoked device. The PT count is determined by the number
of threads that can “fully occupy” all SMs on the device.
For example, for an Intel GPU, the PT count is computed by
block size × 7 × #EU (execution unit, 1 EU can run 7 threads21);
for AMD GPUs, we estimate PT count by block size × 40 × #CU
(compute unit, 1 CU can run 40 active wavefronts16).

3 Results
In this section, we first validate our massively parallel MMCL
algorithm using standard benchmarks and then systematically
characterize and compare speedup ratios over a range of
CPU/GPU devices using single- and multithreaded MMC on
CPUs as references. The simulation speeds are reported for both
conventional single-grid MMC and dual-grid MMC (DMMC).
For all simulations, 108 photons are simulated with atomic
operations1 enabled. All benchmarks were performed on Ubuntu
Linux 16.04 with the latest stable GPU drivers. All simulation
input data and scripts are provided in our open-source code
repository on GitHub (http://github.com/fangq/mmc) for repro-
ducibility and future comparisons.

In the first set of benchmarks, we focus on validating the
accuracy of MMCL in two simple geometries: B1 (cube60)—
a cubic homogeneous domain (see Fig. 2 in Ref. 6) and B2
(sphshells)—a heterogeneous domain made of multilayered
spherical shells [Fig. 1(c) in Ref. 10].

Briefly, the B1 benchmark contains a 60 × 60 × 60 mm3

homogeneous domain with an absorption coefficient μa ¼
0.005 mm−1, scattering coefficient μs ¼ 1 mm−1, anisotropy
g ¼ 0.01, and refractive index n ¼ 1.0. The medium outside
of the cubic domain is considered as air. In the B2 benchmark,
the optical properties and dimensions of each layer are described
previously.10 In both cases, a pencil beam source injects photons
at (30, 30, 0) mm, with the initial direction pointing along theþz
axis. Boundary reflection is considered in B2 but not in B1.

Both MMC and MMCL share the same tetrahedral mesh for
each simulation. For B1 and B2, two mesh densities were cre-
ated to separately compare MMC and MMCL in the single-grid
and dual-grid10 (denoted as B1D and B2D) simulation methods.
The node and element numbers for the generated meshes along
with the preaccelerated MMC simulation speeds are summa-
rized in Table 1. We want to mention that MMC simulation
speed is correlated more strongly with the mesh density (nor-
malized by the local scattering coefficient) within the high-
fluence regions than the total mesh element/node sizes. For a
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fixed domain, however, increased mesh density results in higher
element/node numbers.

In Figs. 2(a) and 2(b), we show the cross-sectional contour
plots of the fluence distributions (mm−2) in log 10-scale using
the fine-mesh model along the plane y ¼ 30.5 mm. We also
overlap the result from the DMMC output with those from
MMCL to show the agreements between different MC methods.

In the second set of tests, we expand our comparisons to
more challenging cases involving realistic complex domains.
Two simulations are compared: B3 (colin27)—simulations on
a complex brain atlas—colin27 (Fig. 4 in Ref. 6) and B4 (skin-
vessel)—the skin-vessel benchmark.22 Briefly, the B3 bench-
mark contains a four-layer brain mesh model derived from an
atlas;6 B4 contains a three-layer skin model with an embedded
vessel. The generated meshes for the two complex examples are
also summarized in Table 1. The optical properties for B3 are
described in Ref. 6, and those for B4 are described in Ref. 22.

In Figs. 2(c) and 2(d), we show the cross-sectional contour
plots from the two complex cases. For B3, we show the sagittal
slice along the source plane; for the B4 benchmark, the cross
section is perpendicular to the y-axis aligned vessel. The curved
tissue boundaries are shown as black-dashed lines.

Next, our focus is to benchmark the simulation speeds across
a wide range of CPU/GPU processors using MMCL and com-
pare those with the baseline, i.e., single-threaded (“MMC-1” in
Table 1) or multithreaded (“MMC-8” in Table 1) SSE4-enabled
MMC on the CPU. The branchless Badouel ray-tracing algo-
rithm7,19 and a parallel xorshift128+23 random number
generator are used across all MMC and MMCL simulations.

In Fig. 3(a), we plot the speedup ratios over single-threaded
MMC (MMC-1) across a list of benchmarks and processors.
In Fig. 3(b), we also included a comparison to MCX-CL14—
a voxel-based MC software using OpenCL. The voxelated sim-
ulation domain in MCX-CL matches the DMMC output grid of

Table 1 Summary of the meshes and baseline simulation speeds (in photon/ms, the higher the faster) for the selected benchmarks. The
baseline speeds were measured using a single-thread (MMC-1) or eight-thread (MMC-8) SSE4-enabled MMC on an Intel i7-7700K CPU.

Benchmark B1 (cube60) B1D (d-cube60) B2 (sphshells) B2D (d-sphshells) B3 (colin27) B4 (skin-vessel)

Node# 29,791 8 604,297 3723 70,226 76,450

Elem.# 135,000 6 3,733,387 21,256 423,375 483,128

MMC-1 67.25 100.06 5.73 10.39 12.34 36.72

MMC-8 351.26 568.06 26.43 57.49 67.43 150.42
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Fig. 2 Fluence (mm−2, in log 10-scale) contour plots of MMC and MMCL in various benchmarks:
(a) B1/B1D, (b) B2/B2D, (c) B3, and (d) B4. In (b), we also include a voxel-based MC (MCX-CL) output
for comparison. Black-dashed lines mark tissue boundaries.
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the corresponding MMCL simulations. The simulation speed
numbers (in photon/ms) corresponding to Fig. 3(a) are also
summarized in Table 2.

In addition, we also test MMCL using multiple GPU devices
simultaneously. Two AMD GPUs of different computing capa-
bilities—Vega10 (Vega64) and Vega20 (Vega II)—are used.
When running the B1D test on both GPUs, we distributed the
workload based on the ratio between their single-GPU speeds.
When using both Vega GPUs, we have obtained a speed of 4583
photon/ms in the B1D benchmark; the speeds using Vega10 and
Vega20 alone are 2171 and 2580 (in photon/ms), respectively.

4 Discussions and Conclusion
As expected, the contour plots generated fromMMC andMMCL
are nearly indistinguishable from each other in all four tested
cases in Fig. 2. Similarly, in Figs. 2(a) and 2(b), the DMMC and
dual-MMCL (D-MMCL) outputs also excellently match the sin-
gle-grid outputs. In Fig. 2(b), The previously observed fluence

differences inside the spherical shell between mesh-based sim-
ulations and voxel-based MC simulations (MCX-CL)10 are also
reproduced in MMCL outputs, emphasizing the importance of
using mesh models when simulating domains with curved boun-
daries and high-contrast heterogeneities.

Many observations can be made from the speed results
reported in Fig. 3(a). First, the high scalability of our GPU accel-
erated MMC algorithm is indicated by the increasing speedups
obtained from more recent and capable GPUs. The simulation
speed achieved on the NVIDIA Titan V GPU is 117× to 421×
higher than that of the CPU-based MMC on a single thread; the
highest acceleration on AMD GPUs is achieved on the Vega20
GPU, reporting a 20× to 77× speedup. Moreover, the high port-
ability of the algorithm is evident by the wide range of NVIDIA/
AMD/Intel CPUs and GPUs tested, owing to OpenCL’s wide
support. There is a steady and significant increase in computing
speed between different generations of GPUs made by these
vendors, similar to our previous findings in the voxel-based MC
algorithm.14

(a) (b)

Fig. 3 Speeds of MMCL in six benchmarks (B1 to B4, single-grid; B1D/B2D, dual-grid): (a) speedup
ratios over a single-threaded (on i7-7700K) SSE4 MMC and (b) speeds in dual-grid simulations com-
pared to MCX-CL. In (a), we also report the speed (photon/ms, light-blue) and speedups over the
single-threaded (red) and multithreaded (green) MMC in the labels for benchmark-B3 (Colin27).

Table 2 Simulation speed (in photon/ms, the higher the faster) of MMCL in six benchmarks (B1 to B4, single grid; B1D and B2D, dual-grid); we
also report the voxel-based MCX-CL speed in benchmarks B1D and B2D. The master script to reproduce the above results can be found in
the “mmc/examples/mmclbench/” folder of our software.

Device B1 B2 B3 B4 B1D B2D B1D (MCXCL) B2D (MCXCL)

NVIDIA Titan V 7874.02 899.25 5198.05 8829.24 23359.03 3709.20 37835.79 9353.66

NVIDIA RTX 2080 7319.04 465.62 3930.20 4147.83 22202.49 3295.87 43917.44 10095.91

NVIDIA GTX 1080Ti 2959.81 357.89 1008.48 2721.38 6079.03 924.16 20648.36 3826.14

NVIDIA GTX 1080 2642.92 318.22 843.28 1759.82 4547.73 665.72 15351.55 2796.73

NVIDIA GTX 980Ti 2254.44 295.36 663.21 2925.43 3872.37 542.73 12211.50 2319.06

AMD Vega 20 1315.62 189.17 424.07 2839.54 2579.51 378.00 29577.05 7105.30

AMD Vega 10 1086.45 161.42 326.89 2444.87 2170.52 302.46 25680.53 5865.45

Dual Xeon E5-2658v3 708.19 103.86 265.00 756.74 1405.90 167.69 1127.86 181.83

Intel i7-8700K 538.80 49.29 126.80 313.77 670.12 80.92 597.07 89.02

Intel i7-7700K 434.86 35.41 103.64 188.83 522.77 67.28 397.16 58.96
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Before comparing the speed differences in mesh and voxel-
based simulations, as shown in Fig. 3(b), one must be aware that
these two algorithms result in differing levels of accuracy, as
suggested in Fig. 2(b), even when using the same grid space for
output. Nevertheless, several interesting findings can be drawn
from this figure. In all NVIDIA GPUs, MMCL is about 30%
to 50% of the speed compared to voxel-based MCX-CL.14

On AMD GPUs, MMCL is only ∼8% of MCX-CL’s speed.
However, Intel CPUs show an opposite result—MMCL is about
12% to 31% faster than MCX-CL in B1D. The suboptimal
speed on AMD GPUs is also noticeable in Fig. 3(a), where the
speedup from Vega20 is only a fraction of the speedup from
NVIDIA RTX2080, despite the former having 30% higher theo-
retical throughput.

To understand this issue further, we performed a profiling
analysis and discovered that the suboptimal speed on AMD
GPUs results from extensive register allocation by the com-
piler—the AMD compiler produces ∼200 vector registers com-
pared to only 69 by the NVIDIA compiler. The high register
count limits the total active blocks to only 4 on Vega20 com-
pared to 28 on NVIDIA GPUs, making it extremely difficult for
the GPU to “hide” memory latency.16 We are currently collabo-
rating with AMD to investigate this issue.

Moreover, based on our previous observations in voxel-based
MC using OpenCL and CUDA on NVIDIA devices,14 we
noticed that CUDA-based MC simulation is about twofold to
fivefold faster than the OpenCL implementation due to driver
support differences. As a result, we anticipate that if we further
port MMCL to the CUDA programing language, one may
achieve further speed improvement, with the resulting software
limited to NVIDIA GPUs only.

In summary, we report a massively parallel mesh-based
Monte Carlo algorithm that offers a combination of both high
speed and accuracy. The OpenCL implementation allows one to
run high-throughput MC photon simulations on a wide range of
CPUs and GPUs, showing excellent scalability to accommodate
increasingly more powerful GPU architectures. We describe the
insights that we have learned regarding GPU memory utilization
and vendor differences. In addition, we provide speed bench-
marks ranging from simple homogeneous domains to highly
sophisticated real-world models. We report the speed compar-
isons between CPUs and GPUs made by AMD, NVIDIA, and
Intel, and show excellent portability between different devices
and architectures. Our accelerated open-source software, includ-
ing MATLAB/Octave support, is freely available at http://mcx
.space/#mmc.
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