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Abstract

Significance: Quantitative optoacoustic (OA) imaging has the potential to provide blood oxygen
saturation (SO2) estimates due to the proportionality between the measured signal and the
blood’s absorption coefficient. However, due to the wavelength-dependent attenuation of light
in tissue, a spectral correction of the OA signals is required, and a prime challenge is the val-
idation of both the optical characterization of the tissue and the SO2.

Aim: We propose to assess the reliability of SO2 levels retrieved from spectral fitting by meas-
uring the similarity of OA spectra to the fitted blood absorption spectra.

Approach: We introduce a metric that quantifies the trends of blood spectra by assigning a pair
of spectral slopes to each spectrum. The applicability of the metric is illustrated with in vivo
measurements on a human forearm.

Results: We show that physiologically sound SO2 values do not necessarily imply a successful
spectral correction and demonstrate how the metric can be used to distinguish SO2 values that are
trustworthy from unreliable ones.

Conclusions: The metric is independent of the methods used for the OA data acquisition, image
reconstruction, and spectral correction, thus it can be readily combined with existing approaches,
in order to monitor the accuracy of quantitative OA imaging.
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1 Introduction

Estimating oxygen levels in blood is of paramount importance in various preclinical and clinical
applications, e.g., for the study of tumor characteristics,1,2 personalized cancer treatment,3–6 or
the detection and monitoring of cerebral ischemia in newborns.7,8 Quantitative optoacoustic
(OA) imaging is an emerging technique that allows the determination of blood oxygen saturation
(SO2) by exploiting the distinct absorption spectra of oxy- and deoxyhemoglobin9,10 while pro-
viding a higher spatial resolution in deep tissue than diffuse optical tomography.11,12 The esti-
mation of SO2 levels can be achieved by performing spectral fits of blood absorption spectra to
measured OA spectra, after correcting them for spectral distortions induced by the wavelength-
dependent attenuation of light in tissue.9,13,14 One major aspect that has recently gained increas-
ing attention is assessing the reliability of the quantitative results.15,16 In this paper, we focus on
estimating the uncertainty of the SO2 levels retrieved from spectral fitting, independently of the
methods used for OA data acquisition, image reconstruction, or for the correction of spectral
distortions. More precisely, we dwell on the fact that fitted SO2 values that are physiologically
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reasonable do not necessarily imply that the measured OA spectra follow the trend of real blood
spectra. Determining the uncertainty of a fit is a notoriously difficult task that cannot be solved
by generally applicable methods.17–20

We propose to assess the trustworthiness of the SO2 values by evaluating the similarity
between the trends of the measured OA spectra and the trends of the fitted blood spectra.
To quantify the spectral trends, we introduce a metric based on the distinctive shape of blood
spectra. With the examples of an artery and a vein in a human forearm, we showcase how this
metric can be applied to quantitative OA imaging in vivo. The measurements were performed
using a handheld OA system with a linear array ultrasound (US) transducer, acquiring two-
dimensional (2-D) cross-sectional images of the forearm. We start by identifying and analyzing
the distorted OA spectra that originate from the vessels of interest, which constitutes an essential
part of the quantitative analysis of OA images. For spectral correction, we use multiple irradi-
ation sensing (MIS) that has been described in detail elsewhere.21–24 After spectral correction, we
determine the SO2 levels in the vessels and assess the reliability of the outcomes using the metric.

2 Materials and Methods

2.1 Experimental Setup and Data Acquisition

We performed OA experiments on the inside of the forearm of a healthy volunteer, close to the
wrist, to determine the SO2 in the median artery located at a depth of z ≈ 12 mm and in a side
branch of the median antebrachial vein at z ≈ 8 mm, see Fig. 1(a). The experiments were done in
compliance with the ethical principles of the Declaration of Helsinki (2018). The OA system
used has been described in detail in Ref. 24. In short, we illuminated the tissue using a diode-
pumped Q-switched Nd:YAG laser (Spitlight DPSS OPO, InnoLas Laser GmbH, Germany) with
integrated optical parametric oscillator. The light was coupled into a multimode fiber (Thorlabs),
which was fixed on a motorized translation stage (T-series, Zaber, Canada), allowing an auto-
mated stepwise translation of the irradiation spot. For OA signal detection, we employed a linear
array US probe (ATL L7-4, Philips N.V., The Netherlands) connected to a research US system
(V1-64, Verasonics). The transducer was placed on the forearm, the linear array being oriented
perpendicularly to the longitudinal axis y of the arm, defining y ¼ 0 [see Figs. 1(a) and 1(b)].
The arm was immobilized by an arm holder to reduce motion artifacts.25 US gel was used for
acoustic coupling between the transducer and the skin. While acquiring real-time OA and US
images, the position of the transducer was adjusted such that the vessels of interest became vis-
ible in the field of view of the transducer. The initial x position of the tip of the illumination fiber,
x1, was chosen to be directly above the median artery, i.e., to correspond to the minimal distance
between the irradiation spot on the skin and the artery. The y position of the fiber tip was kept at

Fig. 1 (a) Sketch (not to scale) of the illumination fiber and US probe on a cross-sectional mag-
netic resonance image of the volunteer’s forearm, displaying the position of the vessels of interest,
namely (1) the median artery and (2) a side branch of the median antebrachial vein. (b) Orientation
of the linear US transducer array and the irradiation spot, which is translated along x (not to scale).
(c) One data set is formed by N · M reconstructed OA images Sij ðrÞ, the OA signals of the two
vessels of interest are clearly visible.
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y0 ¼ 19 mm. To perform an MIS acquisition sequence (see Supplementary Material), the fiber
tip was translated along the x axis with a step size of 0.5 mm, over a total distance of 9.5 mm,
resulting inN ¼ 20 different irradiation spot positions xi, i ∈ f1; : : : ; Ng [see Fig. 1(b)]. At each
position, 150 OA acquisitions were averaged to increase the signal-to-noise ratio (SNR). The
surface of the arm was flat within the range scanned with the irradiation spot position, and the
position xN of the outermost irradiation spot was around 20 mm away from the edge of the arm
(top-down view). Therefore, the experimental conditions roughly complied with the assumptions
made by the MIS approach with regard to tissue boundaries. The MIS acquisition sequence was
repeated for M ¼ 7 wavelengths λj, j ∈ f1; : : : ; Ng (see Table 1). The number of wavelengths
was chosen as a trade-off between the robustness of the spectral fit and an acceptable acquisition
time. Although, in general, a higher number of wavelengths would be desirable, the resulting
increase in acquisition time would at the same time have led to increased motion artifacts. The set
of wavelengths was chosen so that it contained the isosbestic point at λiso ≈ 800 nm (needed for
the reliability assessment, see Sec. 2.3), and an equal number (3) of wavelengths left and right of
λiso. To the right of λiso, the wavelength range was limited by the stability of the laser as well as by
a low SNR. To the left, we distributed the three wavelengths to capture the spectral peak around
λ ¼ 760 nm for deoxygenated blood. Overall, we sampled the range between λ ¼ 740 nm and
λ ¼ 890 nm with wavelengths spaced equidistantly within the wavelength intervals to the left
and right of the isosbestic point. A frequency-domain algorithm26 was employed to reconstruct
N · M radio-frequency (rf-)mode images with a pixel resolution of 149 μm × 77 μm in the x and
z direction, respectively. Further analysis was performed based on the envelopes of these rf-mode
images, which will from now on be referred to as OA images and denoted by SijðrÞ, for irra-
diation positions xi and wavelengths λj. The signals stemming from the artery and the vein are
clearly visible in the OA images [see Fig. 1(c)], in the following they will be called OA signals.
To be able to correct for wavelength-dependent variations in laser output, the average pulse
energies were recorded for each wavelength λj. During the OA measurements, a standard pulse
oximeter (Nellcor Oximax NPB-40, Medtronic, Ireland) was used to measure the reference
arterial SO2 of the volunteer.

2.2 Motion Correction, Identification of Support, and Pixelwise SO2

Determination

Figure 2(a) shows the OA signals recorded from both the artery and the vein, for one irradiation
position. Part (a) in the animation (Video 1) reveals that, despite the use of an arm holder for
immobilization, the vessel positions fluctuate between different λj. To compensate for these fluc-
tuations, we defined the x and z positions of the vessels, ðxcij; zcijÞ, by manually identifying the
centers of the corresponding OA signals in all N · M OA images and subsequently shifted the
images such that all ðxcij; zcijÞ coincide. Part (b) of the animation (Video 1) displays the OA sig-
nals after motion correction and confirms that the centers are congruent. However, due to noise
and out-of-plane motion, the size, shape, and 2-D profile of the OA signals vary with wave-
length, introducing an uncertainty in the analysis of the OA signals. To account for this uncer-
tainty, we perform, for each OA signal, a statistical analysis over the pixels corresponding to the
respective vessel. These pixels were identified by employing a simple thresholding method (such
as, e.g., in Refs. 27–29), assuming that the intensity of signals originating from vessels signifi-
cantly exceeds the signal intensity in the background. As a threshold, we chose the pixel intensity
that corresponded to 1∕e of the maximum pixel value within a manually selected region of
interest covering the vessel’s OA signal. In consistence with the terminology introduced in
Ref. 12, we call the selected set of pixels the support, defined as “a set of pixels in which the
signal values . . . are determined by the optical absorption inside . . . [the] vessel”. Figure 2(c)

Table 1 Wavelengths used for OA acquisitions.

j 1 2 3 4 5 6 7

λj (nm) 740 760 780 800 830 860 890
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shows the supports for both the artery and the vein, for the same OA signals that were presented
in Figs. 2(a) and 2(b). Separately for each irradiation position xi, the pixelwise analysis of the
spectra was performed on the subset of pixels that were part of the support for all M ¼ 7 wave-
lengths. The decision to exclude pixels from the analysis was motivated by the following ration-
ale: on the one hand, we did not want to include pixels that—for one or more wavelengths—did
not fulfill the criterion for the support, as such pixels were not considered to reliably reflect the
absorption of the blood in the vessel. On the other hand, we did not want to include pixels with
less than M ¼ 7 spectral data points, as 7 is already a very small number with regard to the
spectral analysis.

For the pixels that were part of the support for all wavelengths, we performed the analysis of
the OA spectra both before and after correction of distortions induced by the wavelength-de-
pendent attenuation of light in the tissue. As mentioned earlier, the spectral correction was
achieved by optically characterizing the forearm tissue according to the MIS principle (details
on the spectral correction technique are given in the Supplementary Material and in Video S1,
MPEG, 5.3 MB [URL: https://doi.org/10.1117/1.JBO.25.4.046005.4] and Video S2, MPEG,
5.6 MB [URL: https://doi.org/10.1117/1.JBO.25.4.046005.5]). We determined the effective
attenuation coefficient μeff of the tissue for every wavelength λj and analytically calculated the
fluences ΦijðrÞ in the OA image plane for xi and λj, with the pixel resolution of the OA images.
The spectral correction is then simply a pixelwise division of OA images SijðrÞ by ΦijðrÞ.
Subsequently, SO2 levels were determined by spectral fitting to the corrected OA spectra, for
every individual pixel in the supports.

2.3 Metric for Quantitative Characterization of Spectral Trends

In this section, we address the central issue of this paper, namely the importance of assessing
the reliability of the spectral fits. In Fig. 3(a), we have plotted blood absorption spectra in the
wavelength range used for the experiments, for SO2 values between 0% and 100% with a step
size of 10%, the respective SO2 level being indicated in color code. To construct these spectra,

we extracted the absorption spectra μHbO2
a and μHba of oxy- and deoxyhemoglobin from Ref. 30

and, assuming that hemoglobin is the dominant absorber in blood,31 calculated the absorption

spectrum of blood at a particular SO2 as the respective linear combination of μHbO2
a and μHba .

It can be seen that the blood spectra in Fig. 3(a) follow a range of trends. This range is such
that a spectral fit can result in an SO2 value that can be interpreted as physiologically
reasonable, even if the measured OA spectrum is not an actual blood spectrum. We illustrate

Fig. 2 OA signals emanating from (top) the artery and (bottom) the vein for the different wave-
lengths λj , for one irradiation position, (a) before and (b) after motion correction, together with
(c) segmented supports (Video 1, MPEG, 4.5 MB [URL: https://doi.org/10.1117/1.JBO.25.4
.046005.1]).
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such a situation in Fig. 3(b), where we have generated synthetic OA spectra reflecting random
Gaussian noise (black lines, the number of spectra roughly corresponds to the number of pixels
we found in one support in this study), to which we fitted blood absorption spectra (colored
lines, where the color indicates the fitted SO2 parameter). For the spectral fit, we determined
the blood absorption spectrum in the wavelength range between λ ¼ 740 nm and
λ ¼ 890 nm that matches the OA data best in the least-squares sense, using the fit function

yðλÞ ¼ A · ½μHbO2
a ðλÞ · ðSO2∕100Þ þ μHba ðλÞ · ð1 − SO2∕100Þ� with the SO2 (in %) and a scal-

ing factor A as fit parameters. Note that the factor A accounts for the fact that the absolute
amplitude of a real OA signal detected with a linear array probe does not bear a quantitative
meaning as it depends via the system impulse response on the vessel orientation,32 which indu-
ces an unknown scaling of OA spectra. Even though the OA spectra shown in Fig. 3(b) are
random noise, the corresponding spectral fits result in SO2 values mostly between 0% and
100%. This highlights that the mere fact that a fit yields a physiologically possible SO2 value
does not necessarily imply that the OA spectrum is well described by the fitted blood spectrum
and the SO2 value is meaningful.

Assessing the reliability of the outcome of a fit is known to be a nontrivial task, which often
necessitates ad hoc solutions.19,33 Standard goodness-of-fit parameters, like, e.g., χ2 (the sum of
squared residuals) or R2, have limited suitability for our purpose because they cannot identify
whether the differences between the data points and the fitted curve are biased (i.e., systematic).
On the other hand, analyzing the quality of the spectral fit using more sophisticated statistical
procedures is usually impeded by a very low number of available data points (wavelengths) as a
consequence of limits in the acquisition time acceptable for in vivo measurements, together with
technical constraints of the OA experiment. Instead, we suggest to use a customized method that

Fig. 3 (a) Blood spectra for SO2 levels between 0% (blue) and 100% (red), together with the fitted
first-order polynomials (in black) to the spectra left and right of the isosbestic point. (b) Synthetic
OA spectra (random Gaussian noise, in black) with fitted blood spectra (in color), colors indicating
the respective SO2 levels. (c) Pairs of the two slopesm1 and m2 determined for the blood spectra
shown in (a), constituting the reference line for the metric plots. (d) Metric plot for the synthetic OA
spectra shown in (b): reference line together with slope pairs (m1, m2) determined for the synthetic
OA spectra (circles), colors indicate the SO2. (e) Synthetic arterial blood spectra (in black), gen-
erated by adding random Gaussian noise to the absorption spectrum of blood at SO2 ¼ 98%,
together with fitted spectra (in color), colors indicating the respective SO2 levels. (f) Metric plot
for the spectra shown in (e): reference line together with slope pairs (m1, m2) determined for the
synthetic OA spectra (circles), colors indicate the SO2. For the visualization of the OA spectra in
(b) and (e), each OA spectrum was divided by the scaling factor A given by the respective spectral
fit. Further note that the change in units between (c) and (d), (f) is caused by the normalization of
the spectra before determining (m1, m2); details are given in the text.

Ulrich et al.: Reliability assessment for blood oxygen saturation levels measured with optoacoustic imaging

Journal of Biomedical Optics 046005-5 April 2020 • Vol. 25(4)



is tailored to the analysis of fits of blood spectra and easy to use. More specifically, we propose to
determine the similarity between the trend of the measured OA spectrum and the trend of the
fitted blood spectrum.

To quantify the trends of blood spectra, we exploit a distinctive feature in the wavelength
range between λ ¼ 760 nm and λ ¼ 890 nm, namely that the trends of the spectra before and
after the isosbestic point at around λiso ≈ 800 nm can be approximated by straight lines with
slopesm1 andm2, respectively [see black lines in Fig. 3(a)]. We use the slope pair (m1,m2) as a
metric and determine the values of m1 and m2 by performing least-squares fits of two first-
order polynomials to the spectra on the left and right sides of the isosbestic point, respectively.
While the spectral fit to determine the SO2 was performed including the full wavelength
range between λ ¼ 740 nm and λ ¼ 890 nm, the polynomial fits to determine the slopes
m1 and m2 were performed on the two subsets of wavelengths f760 nm; 780 nm; 800 nmg
and f800 nm; 830 nm; 860 nm; 890 nmg, respectively. λ ¼ 740 nm was not included for
the polynomial fits as this wavelength is outside the range in which blood spectra are
approximately linear, see Fig. 3(a). The pairs (m1, m2) corresponding to actual blood with
0% ≤ SO2 ≤ 100% constitute a reference and are visualized in a scatter plot [m2 against
m1, see Fig. 3(c)] as color-filled points, where the color denotes the corresponding SO2 value,
like in Fig. 3(a). It can be seen that the points form a line, in the following called reference line.
Likewise, to quantify the trend of a measured OA spectrum, we determine the slope pair (m1,
m2) by performing least-squares fits of two first-order polynomials to the OA data points left
and right of the isosbestic point. Due to the aforementioned unknown scaling of the measured
OA spectra, direct fits to the OA spectra would not result in slopes that are comparable to those
of actual blood. To obtain (m1,m2) values that do not depend on the scaling, we normalized the
OA spectra before performing the polynomial fits to determine (m1, m2). We normalized each
OA spectrum by dividing it by its respective mean value across the full wavelength range
between λ ¼ 740 nm and λ ¼ 890 nm. The same normalization was used for a redefinition
of the reference line to ensure comparability, i.e., we divided each blood spectrum by the
respective mean value over the set of wavelengths used for the OA measurement, before deter-
mining the reference slope pairs (m1, m2). Note that this normalization causes a change in
magnitude and unit of the reference (m1, m2) with respect to the original reference line shown
in Fig. 3(c). To measure the similarity between the trend of a measured OA spectrum and
the trend of the blood spectrum determined in the corresponding spectral fit, the slope pair
(m1, m2) for the OA spectrum is visualized as a colored circle in the scatter plot together with
the reference line (the color of the circle designating the SO2 level given by the spectral fit).
The resulting scatter plot containing the reference line and the circles for all OA spectra in the
support, referred to as metric plot, allows one to assess the reliability of the spectral fits.

We illustrate this with two examples. In the first example in Fig. 3(d), the position of each
circle represents the pair (m1, m2) for one of the synthetic OA spectra given in Fig. 3(b). The
positions of the circles mostly far away from the reference line indicate that no systematic
similarity can be established between the trends of the OA spectra and those of the fitted spec-
tra, meaning that the fits, even though they may result in physiologically possible SO2 values,
are not trustworthy. In case of a high similarity between the trends of measured OA spectra and
the trends of fitted blood spectra, each colored circle would be close to the respective point in
the reference line having the same color. Such a situation is illustrated with a second example,
see Figs. 3(e) and 3(f). Figure 3(e) shows synthetic OA spectra (black lines) for an artery,
numerically generated by adding random Gaussian noise to the absorption spectrum of blood
at SO2 ¼ 98% (which is a typical SO2 level for arterial blood

34). The SNR was adjusted to be
comparable to that observed in our OA images. Again, the number of spectra was chosen to
roughly correspond to the number of pixels we obtained in a support. The red color of the fitted
blood spectra indicates that the reference SO2 (98%) has been retrieved correctly. The corre-
sponding metric plot is given in Fig. 3(f). Two main observations can be made. First, the circles
describing the trends of the OA spectra across the support are clustered, which contrasts with
the situation given in Fig. 3(d). This means that we can identify a systematic trend, i.e., the
trends of OA spectra do not differ much between individual pixels, despite the stochastic
fluctuations in the spectra. Note that a statistically meaningful number of spectra, provided
by the pixelwise analysis in a support, is a prerequisite for the identification of a cluster in the
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corresponding metric plot. Second, the position of the cluster agrees with the position of the
points on the reference line covering the same color range. These two observations together
indicate that the trends of the OA spectra do indeed systematically resemble the trends of the
fitted blood spectra. The metric plot combines all the relevant information needed to compre-
hensively represent the outcomes of an SO2 estimation, namely (i) information on the uniform-
ity of the spectral trends across the support (clustering of circles), (ii) the fitted SO2 values
across the support (colors of circles), and (iii) information on the similarity between the OA
spectra and the fitted blood spectra (proximity of circles to points on the reference line cover-
ing the same color range).

3 Results and Discussion

3.1 Quantitative Analysis of Uncorrected OA Spectra

In a first step, we would like to demonstrate based on our in vivo data that the metric can already
be used to quantitatively analyze the measured OA spectra before correction. The analysis of
uncorrected spectra can be helpful as, in case of an unsuccessful spectral correction, it would be
difficult to distinguish potential sources of error related to the different steps involved in the
analysis if merely the corrected OA spectra were investigated. In particular, applying a spectral
correction and determining SO2 levels is only sensible if one is certain that the corresponding
supports have been correctly identified and that motion artifacts have been corrected for. We
show that this can be ascertained using parts of the information given in the metric plots, namely
by observing the clustering of slope pairs.

Figures 4(a) and 4(b) show the uncorrected OA spectra (black lines) for all pixels within the
supports for the artery and the vein, respectively, for one irradiation position. According to the
definition of the support (recall Sec. 2.2), every pixel in the support is assumed to reflect the
wavelength dependency of the total energy absorbed in the corresponding vessel and thus the OA
spectra are expected to be uniform across the support. This assumption is reasonable if either
(i) the optical penetration depth is much larger and/or (ii) the vessel diameter is much smaller
than the size of the point spread function of the imaging system.35 In this study, the first condition
is roughly fulfilled [the size of the point spread function is ∼0.5 mm and the penetration depth is
around 2 mm (μa ≈ 0.5 mm−1)] and, in agreement with the expectation, the spectra correspond-
ing to individual pixels of one support are relatively uniform, both for the artery and the vein. The
small variations observed between individual spectra are a result of differences in the size, shape,
and 2-D profile of the supports that occurred between the acquisitions of data sets corresponding
to different wavelengths (recall Sec. 2.2). The variations are slightly larger for the vein due to

Fig. 4 (a), (b) Uncorrected OA spectra corresponding to individual pixels within the support (black
lines), for the artery and the vein, respectively. Reference blood spectra are shown as dashed lines
and correspond to the reference SO2 level determined by pulse oximetry (SO2 ¼ 98%) and an
average literature value (SO2 ¼ 70%), respectively. For the visualization, each uncorrected OA
spectrum and reference blood spectrum was normalized by dividing it by its respective mean value
over the set of wavelengths used for the OA measurement. (c), (d) Reduced metric plots for spectra
shown in (a), (b), pairs (m1, m2) determined for the OA spectra are shown as gray circles, (m1, m2)
for the reference blood spectra are given as black points. A video showing the figure for all x i is
available (Video 2, MPEG, 8.4 MB [URL: https://doi.org/10.1117/1.JBO.25.4.046005.2]).
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a lower SNR. Nevertheless, for both the artery and the vein, it can be seen that the spectra follow
a systematic trend.

Furthermore, it is apparent in Figs. 4(a) and 4(b) that the trends of the spectra recorded from
the artery and the vein are distorted with respect to the actual absorption spectra of the blood in
the vessels (dashed lines), due to the wavelength-dependent attenuation of the light. The refer-
ence spectra correspond to SO2 ¼ 98% (given by the pulse oximeter measurement) for the artery
and to SO2 ¼ 70% (average literature value36–38) for the vein. Interestingly, the OA spectra are
very similar to blood spectra at low SO2 levels [compare Fig. 3(a)]. However, this similarity is
not relevant as for vessels located at these depths in the tissue, the spectral distortion is generally
expected to be significant and thus uncorrected OA spectra most likely do not represent the
actual absorption spectra of the blood in the vessels. In fact, spectral fits to the uncorrected
OA spectra shown in Figs. 4(a) and 4(b) result in unphysiologically low SO2 values, i.e., around
20% for the artery and 30% for the vein.

The qualitative observations in Figs. 4(a) and 4(b) are summarized in a condensed way in a
reduced representation of the metric plot. Since, as mentioned above, before correction there is
generally no reason to expect that the trends of the OA spectra follow the ones of actual blood,
a comparison between the positions of the slope pairs and the reference line [as it was done in
Figs. 3(d) and 3(f)] is not meaningful. Hence, the reduced metric plot does not include infor-
mation on fitted SO2 levels and omits the reference line. In Figs. 4(c) and 4(d), the reduced
metric plots are given for the spectra shown in Figs. 4(a) and 4(b), respectively. The existence
of systematic trends in the measured OA spectra is underlined by a strong clustering of slope
pairs (m1,m2) both for the artery and the vein, corroborating the good performance of the motion
correction and segmentation procedure outlined in Sec. 2.2 and thus confirming that it is sensible
to proceed to the spectral correction.

In addition, the reduced metric plots allow one to visualize the distortion of the OA spectra
with respect to the reference blood spectra for the artery and the vein. For this purpose, we have
added the reference slope pairs (corresponding to SO2 ¼ 98% and SO2 ¼ 70%, respectively,
displayed as black points). A measure for the spectral distortion is given by the position of the
cluster with respect to the position of the reference point: for the artery, the distance between the
cluster and the reference point is larger than for the vein, confirming the stronger distortion of the
spectra in Figs. 4(a) than in 4(b). The degree of distortion of measured OA spectra is generally
expected to depend on the distance between the irradiation spot at the tissue surface and the
blood vessel. According to Eq. (1) in the Supplementary Material, given a particular wavelength
dependency of μeff , a larger distance from the illumination source leads to more pronounced
differences in the fluence between different wavelengths and thus to a more pronounced spectral
distortion. Although the artery is located at a larger depth than the vein, the distance between the
irradiation spot and the vessel is, for the irradiation position x ¼ 4.5 mm, larger for the vein than
for the artery, due to the irradiation geometry used in the experiment. Therefore, the stronger
distortion for the artery cannot be explained by the distance from the illumination source.
A plausible reason for the observed differences in the distortion of the OA spectra could be
differences in the optical properties of the two tissue segments that are located between the skin
and the artery/vein.

3.2 Quantitative Analysis of Corrected OA Spectra

After having established the good performance of the motion correction and segmentation pro-
cedure, we proceed by showing the results of the spectral correction.

Figure 5 displays the spectra of the effective attenuation coefficient (μeff ) used for the cor-
rection of the OA spectra. According to the MIS approach, the μeff spectrum assigned to each
blood vessel is expected to optically characterize a tissue segment for which the diffusion
approximation is valid (see Supplementary Material). Since these two tissue segments differ
(they are defined by different subsets of irradiation positions at the forearm surface and different
positions of the vessels, see Supplementary Material), they might have different optical proper-
ties. This is a possible explanation for the significant difference between the μeff obtained for the
artery and the vein. For both tissue segments, the μeff spectra are in line with the broad range of
effective attenuation coefficients of human tissue reported in the literature (approximately
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between 0.1 and 1 mm−1).39–43 Note that, for both the artery and the vein, spectral correction was
only performed for the respective subset of irradiation positions corresponding to the tissue
segment that is optically characterized by the μeff given in Fig. 5.

The OA spectra retrieved after correction are shown as black lines in Figs. 6(a) and 6(b), for
the artery and the vein, respectively, together with the blood spectra determined by the spectral
fits. It can be clearly seen that the corrected OA spectra exhibit strong fluctuations across the
wavelength range. It is reasonable to assume that parts of these fluctuations can be explained by
errors in μeff : it can be observed, by looking at Fig. 5, that fluctuations in the μeff spectra,
although they are less pronounced, are very similar to the fluctuations in the corrected OA spec-
tra. This observation is plausible if one assumes that the observed fluctuations in μeff are due to
measurement errors relative to true μeff spectra that are much smoother than the measured μeff
spectra. Such errors would indeed appear in the corrected OA spectra, because, as explained in
Sec. 2.2, μeff is used to calculate the fluenceΦijðrÞ, and the corrected OA spectra are determined
by performing a division of the OA image SijðrÞ by the fluence ΦijðrÞ. Due to the exponential
dependence of the fluence on μeff [see Eq. (1) in the Supplementary Material], errors in the μeff
spectra appear in an amplified way in the corrected OA spectra.

As mentioned earlier, the goal of this paper is to demonstrate the necessity of assessing the
reliability of spectral fits. Qualitatively, it can be seen in Figs. 6(a) and 6(b) that, for the vein, the
level of fluctuations in the OA spectra around the fitted blood spectra is larger than for the artery.
This can already be regarded as an indication of a difference in the reliability of the spectral
correction between the artery and the vein, and one could, e.g., attempt to quantify the reliability
based on χ2, which would represent a measure for the level of fluctuations in the OA spectra.
With regard to the reliability assessment of the SO2 estimation, however, the level of fluctuations
is not the main deciding factor. We argue that the more fundamental question is to what extent the
corrected OA spectra have a systematic trend that resembles that of actual blood. As already
explained in Sec. 2.3, simply fitting blood spectra to the corrected OA spectra can be misleading:
the SO2 values corresponding to the fitted blood spectra in Figs. 6(a) and 6(b) (indicated in color)
are physiologically realistic both for the artery (fitted SO2 values around 100%) and the vein
(fitted SO2 values around 60%). For the artery, it can be seen that the OA spectra fluctuate around
the monotonically increasing blood spectra determined by the spectral fits, whereas a substantial
deviation in the trends between OA spectra and fitted spectra can be observed for the vein. To
quantify this qualitative observation, we use the metric introduced in Sec. 2.3, as it provides a
measure to quantify the agreement between spectral trends that is—as we argue—more relevant
for the SO2. The metric plots corresponding to the corrected OA spectra shown in Figs. 6(a) and
6(b) are given in Figs. 6(c) and 6(d), respectively. For the artery, the colored circles are clustered
close to the filled points on the reference line covering the same color range. This underlines that
the corrected OA spectra systematically follow the trends of the fitted blood spectra [both obser-
vations stated in Sec. 2.3 are fulfilled, like in the example shown in Fig. 3(f)] and attests the

Fig. 5 μeff spectra estimated for the tissue between the irradiation points at the forearm surface
and the artery (red) and the vein (blue).
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trustworthiness of the fits (note here that we interpret the cluster’s distance from the reference
line in relation to its spread: for the artery, the distances of the circles from the reference line are
smaller than or comparable to the extent of the cluster). Moreover, the proximity of the cluster to
the point on the reference line corresponding to SO2 ¼ 98% indicates a reasonable spectral cor-
rection, as the cluster is located closer to the reference point than before correction. For the vein,
the circles are also clustered, however, their positions are way off the positions of the points on
the reference line covering the same color range, which is a clear indication that the fits are not
reliable and that the fitted SO2 levels, although they are physiologically realistic, are not to be
trusted. Here, the erroneousness of the spectral correction is de facto proven without the need of a
reference SO2, as the distance between the cluster and the reference line in the metric plot reveals
the dissimilarity between the corrected OA spectra and actual blood spectra.

Based on these metric plots, it is also possible to quantify a cluster’s distance from the refer-
ence line in relation to its spread, in order to provide a number that indicates the similarity
between the trends of the corrected OA spectra and the trends of the fitted blood spectra. A
possible approach to measure the distance of the cluster from the reference line is by determining
the mean value of the distances of individual circles in the cluster from the point on the reference
line that corresponds to the average SO2 in the cluster. An approximate measure for the spread of
the cluster is, e.g., given by the mean distance of the individual circles from the centroid of the
cluster. In the ideal case where the cluster’s centroid coincides with the reference point, the ratio
between these two quantities would be 1. In this study, we obtain a ratio of 1.71� 0.31 for the
artery (mean and standard deviation over all irradiation positions) and a ratio of 7.84� 3.58 for
the vein. The ratio obtained for the artery is thus close to the ideal case, underlining the accuracy
of the correction of the artery’s OA spectra, whereas the one obtained for the vein is much larger.
With regard to a clinical application, one could define a threshold for the aforementioned ratio to
identify unreliable results. However, the definition of such a threshold would require more sta-
tistics than we can provide, depends on the clinical target, and was therefore beyond the scope of
this paper.

From the observed dissimilarity between the corrected OA spectra and actual blood spectra in
case of the vein, it can be concluded that the μeff spectrum given in Fig. 5 for the tissue segment
between the irradiation points at the forearm surface and the vein is not trustworthy. A possible
reason for the unsuccessful spectral correction for the vein is the fact that the tissue segment that
is optically characterized using the MIS method, i.e., the segment between the irradiation points
and the vessel, is located in a shallower tissue region than in the case of the artery. For the
accuracy of the MIS method, the structure of the tissue that lies between the source and the
vessel is crucial. In particular, MIS relies on the assumption that there exist prevalent tissue
regions between the irradiation positions and the vessel that can be modeled as an optically
quasihomogeneous medium in which the fluence can be described by the analytical diffusion
approximation for a semi-infinite medium. This assumption seems to be more violated in case of

Fig. 6 (a), (b) Corrected OA spectra corresponding to individual pixels within the support (black
lines), for the artery and the vein, respectively, together with the fitted spectra that are plotted in
color to indicate the respective SO2 levels. For the visualization, each OA spectrum was divided
by the scaling factor A given by the respective spectral fit. Reference spectra are shown as
purple dashed lines and correspond to the reference SO2 level determined by pulse oximetry
(SO2 ¼ 98%) and an average literature value (SO2 ¼ 70%), respectively. (c), (d) Metric plots for
spectra shown in (a), (b), representing the reference line together with the pairs (m1, m2) deter-
mined for the corrected OA spectra. A video showing the figure for all x i is available (Video 3,
MPEG, 7.7 MB [URL: https://doi.org/10.1117/1.JBO.25.4.046005.3]).
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the vein, which is plausible, on the one hand, as the photon paths are influenced more strongly by
superficial tissue layers, which are likely to have more pronounced optical inhomogeneities, and
on the other hand, due to the presumably stronger influence of the boundary (skin surface). It
should be noted that we did not comment on the accuracy of the μeff spectra earlier, as neither a
reference for the optical properties is available nor had the performance of the MIS method been
validated in vivo. The metric analysis proposed in this paper—or any method that allows one to
assess the trustworthiness of spectral fits—could be a promising approach to systematically
investigate the range of applicability and validity of the MIS method; however, this was not
within the scope of this study.

When comparing Figs. 4(a), 4(b) and 6(a), 6(b) with the blood absorption spectra shown in
Fig. 3(a), it can be observed that the OA spectra are more similar to actual blood spectra before
spectral correction than after correction. However, as mentioned in Sec. 3.1, this observation is
not meaningful, as in this tissue depth a substantial spectral distortion is expected and the uncor-
rected OA spectra therefore in general do not reflect the absorption spectra of the blood in the
vessels. Ideally, it would be expected that a spectral correction brings the trends of the OA spec-
tra closer to the spectral trends of the blood in the vessels. However, errors in the estimated μeff
spectra propagate into the corrected OA spectra, and in case of the vein, errors in μeff led to a
dissimilarity between the corrected OA spectra’s trends and the spectral trend of actual blood.
We would like to underline that it is exactly the goal of the proposed metric to identify such
cases. In particular, the in vivo results presented in this section highlight what has been men-
tioned in Sec. 2.3, namely that it is not sufficient to rely on the physiological plausibility of SO2

values retrieved from spectral fits. We would like to emphasize again that the reliability assess-
ment based on our metric is independent of the technique employed for spectral correction.

The central message of this paper is that in quantitative OA imaging, an assessment of the
reliability of spectral fits is advisable, and we suggest that quantifying the similarity between
trends of OA spectra and trends of fitted blood spectra constitutes a valuable approach. To show-
case this, we proposed a metric on which this similarity analysis can be based. The choice of the
particular metric was based on an important observation: in Figs. 3(a) and 3(c), it could be seen
that the SO2 is related to the slopes of the blood spectrum left and right of the isosbestic point in
that the slope pairs (m1, m2) corresponding to actual blood are uniquely linked to the SO2 [see
reference line in Fig. 3(c)]. One can think of a spectral fit as the characterization of the trend of a
blood spectrum with only one free parameter (the SO2), whereas the metric characterizes the
trend of a spectrum in two dimensions (m1 andm2), thus providing a more detailed description of
the trend. In general, a measurement outcome can only be deemed reliable, if alternative methods
yield similar results. In our case, we compare the trend that is given by (m1, m2) with the trend
suggested by the SO2 resulting from the spectral fit. The two methods are in agreement, if the
cluster in the metric plot is located close to the points on the reference line covering the same
color range. The proposed metric is sensitive to systematic biases between OA spectra and fitted
spectra. The type of bias the metric detects (dissimilarities in the slopes of the spectra left and
right of the isosbestic point) is highly relevant with regard to the SO2 since, as mentioned above,
the SO2 level and the slopes are strongly correlated. Yet, it is important to mention that our metric
is very likely not the only metric suitable for the purpose, i.e., for quantifying the similarity
between measured and fitted spectra. Another potential approach to quantify the similarity
would, e.g., be to apply principle component analysis to both the OA spectra and the fitted blood
spectra. It was, however, beyond the scope of this paper to perform a detailed study on the opti-
mal choice of the metric.

4 Conclusion

A central challenge in in vivo quantitative OA imaging is the validation of the SO2 values
retrieved in vessels, following the optical characterization of the tissue and the spectral correction
of the measured OA spectra that were initially distorted due to the wavelength-dependent optical
attenuation of light. Throughout this paper, we have shown that one valuable piece of informa-
tion that is directly available from the OA measurements is the trends of the OA spectra in the
vessel supports, and not only after the spectral correction but also before. The intention is, before
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spectral correction, to identify systematic trends of spectra in the supports and, after correction,
to assess the similarity between the trends of the corrected OA spectra and those of the fitted
blood spectra. This two-step analysis can be extremely helpful to distinguish errors in the mea-
surements and/or image analysis (e.g., imperfect support segmentation, influence of motion arti-
facts, or a low SNR) from an erroneous spectral correction (i.e., incorrect optical characterization
of the tissue). With the examples of in vivomeasurements from a human artery and vein, we have
demonstrated that the analysis of the trends is essential: retrieving physiologically sound SO2

values does not necessarily indicate that the spectral correction has been successful. In particular,
the OA measurements acquired from the vein illustrate a case in which the SO2 retrieved after
correction could misleadingly indicate a successful correction and the metric can be used to
disprove this, by showing that the trends of the corrected OA spectra do not agree with the trends
of the fitted blood spectra.

The main focus of this paper was to draw attention to the fact that analyzing the similarity
between the OA spectra and the fitted blood spectra constitutes an easy way of assessing the
reliability of spectral fits. The metric used in this study to quantify spectral trends was chosen
with the goal to provide a representative similarity measure that is relevant for the SO2. It can
easily be incorporated into existing quantitative OA approaches since the analysis is computa-
tionally very lightweight and does not need a priori knowledge. With the corresponding metric
plots, we have introduced a concise representation of the results. These metric plots contain
information across the supports on (i) the uniformity of the trends of the OA spectra (this could,
in principle, be adapted to perform an automated segmentation of the OA images), (ii) the fitted
SO2 levels, and (iii) the similarity between the OA spectra and the fitted blood spectra. In recent
years, promising developments have taken place in the field of quantitative OA imaging (see,
e.g., Refs. 44–47) and our metric analysis complements these so as to move forwards with the
generation of more reliable medical images.
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