
BlenderPhotonics: an integrated open-source software
environment for three-dimensional meshing and

photon simulations in complex tissues

Yuxuan Zhang a and Qianqian Fang a,b,*
aNortheastern University, Department of Bioengineering, Boston, Massachusetts, United States

bNortheastern University, Department of Electrical and Computer Engineering, Boston,
Massachusetts, United States

Abstract

Significance: Rapid advances in biophotonics techniques require quantitative, model-based
computational approaches to obtain functional and structural information from increasingly
complex and multiscaled anatomies. The lack of efficient tools to accurately model tissue struc-
tures and subsequently perform quantitative multiphysics modeling greatly impedes the clinical
translation of these modalities.

Aim: Although the mesh-based Monte Carlo (MMC) method expands our capabilities in sim-
ulating complex tissues using tetrahedral meshes, the generation of such domains often requires
specialized meshing tools, such as Iso2Mesh. Creating a simplified and intuitive interface for
tissue anatomical modeling and optical simulations is essential toward making these advanced
modeling techniques broadly accessible to the user community.

Approach: We responded to the above challenge by combining the powerful, open-source three-
dimensional (3D) modeling software, Blender, with state-of-the-art 3D mesh generation and
MC simulation tools, utilizing the interactive graphical user interface in Blender as the front-
end to allow users to create complex tissue mesh models and subsequently launch MMC light
simulations.

Results: Here, we present a tutorial to our Python-based Blender add-on—BlenderPhotonics—
to interface with Iso2Mesh and MMC, which allows users to create, configure and refine
complex simulation domains and run hardware-accelerated 3D light simulations with only
a few clicks. We provide a comprehensive introduction to this tool and walk readers through
five examples, ranging from simple shapes to sophisticated realistic tissue models.

Conclusions: BlenderPhotonics is user friendly and open source, and it leverages the vastly rich
ecosystem of Blender. It wraps advanced modeling capabilities within an easy-to-use and inter-
active interface. The latest software can be downloaded at http://mcx.space/bp.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.27.8.083014]

Keywords: Monte Carlo method; mesh generation; three-dimensional modeling; open-source
software; graphical user interface.

Paper 22006SSTR received Jan. 12, 2022; accepted for publication Mar. 23, 2022; published
online Apr. 15, 2022.

1 Introduction

Model-based computational techniques play an essential role in today’s medical imaging, giving
rise to an array of emerging functional imaging modalities that offer more specific and accurate
diagnostic information at much lower costs and higher levels of patient safety.1,2 For example,
functional tomographic imaging techniques based on computationally solving inverse models,
such as diffuse optical tomography, microwave tomography,3 photoacoustic tomography, etc.,4

*Address all correspondence to Qianqian Fang, q.fang@neu.edu

Journal of Biomedical Optics 083014-1 August 2022 • Vol. 27(8)

https://orcid.org/0000-0003-4426-5636
https://orcid.org/0000-0003-0805-935X
http://mcx.space/bp
http://mcx.space/bp
https://doi.org/10.1117/1.JBO.27.8.083014
https://doi.org/10.1117/1.JBO.27.8.083014
https://doi.org/10.1117/1.JBO.27.8.083014
https://doi.org/10.1117/1.JBO.27.8.083014
https://doi.org/10.1117/1.JBO.27.8.083014
https://doi.org/10.1117/1.JBO.27.8.083014
mailto:q.fang@neu.edu
mailto:q.fang@neu.edu
mailto:q.fang@neu.edu


have made ample advances in the past few decades and are increasingly used in clinical care and
research. Novel image reconstruction techniques based on numerical computation enhance
image contrast and reduce noise, enabling clinicians to more easily discern early-stage diseases.5

Furthermore, the rise of artificial intelligence in recent years has demonstrated transformative
effects on medical imaging and offers another excellent example of how computation can
improve modern healthcare.6 To develop efficient model-based imaging data analysis pipelines,
one must address several major hurdles, including (1) shape-modeling of complex tissue
anatomies, (2) accurate shape discretization in terms of mesh generation or rasterization, and
(3) efficient multiphysics solvers that can utilize such discretized domain to quantitatively solve
the respective forward problems. An easy-to-use and fully open-source computational platform
built for such a purpose will be of great value to the research community.

In recent decades, near-infrared (NIR)-based optical imaging methods have shown great
potential in a number of applications, such as breast cancer diagnosis, neoadjuvant chemotherapy
monitoring, and functional brain imaging. The use of nonionizing radiation in optical imaging
makes it possible for long-term monitoring; its relatively low-cost and portable instruments also
permit broad access when compared with conventional imaging modalities. In addition, optical
imaging provides functional information regarding the tissue’s physiological status by recov-
ering tissue chromophores (such as oxy-/deoxy-haemoglobin, water, lipids, etc.). For example,
functional infrared spectroscopy (fNIRS)—an imaging technique that uses NIR light to detect
brain activations7—has been rapidly adopted in neuroscience research and clinical applications.
In fNIRS, the spatiotemporal variations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)
concentrations due to brain activities are detected with high temporal resolution using specific
wavelengths in an optical window, where the absorption spectra of HbO and HbR are distinct.8,9

Optical imaging relies on quantitative and accurate forward models to account for the com-
plex photon-tissue interactions,10,11 which can be described by the radiative transfer equation
(RTE). The RTE connects photon radiance with the optical properties in the medium, i.e.,
absorption coefficient (μa), scattering coefficient (μs), anisotropy (g), and refractive index (n).
Unfortunately, the RTE can only be solved analytically in simple domains, such as infinite
media, semi-infinite media, or infinite slabs; it has to be computed numerically in complex
or random media.12,13 The diffusion equation (DE), an approximation to the RTE, is only valid
in domains in which scattering is dominant, i.e., μs ≫ μa. One can solve the DE efficiently using
numerical methods, such as the finite-element method (FEM), over a discretized domain in the
form of a tetrahedral mesh. A number of FEM-based DE solvers have been reported, including
NIRFAST,14 TOAST++,15 and Redbird.16 Although the DE can be solved much more quickly
when compared with RTE solvers,17 it may yield erroneous solutions in several tissue types,
including non- or low-scattering tissues, such as cerebrospinal fluid (CSF) regions in the brain,
lungs, or nasal cavities. In such cases, solving the RTE becomes necessary.18

The Monte Carlo (MC) method, a stochastic solver to the RTE, is widely recognized as the
gold-standard for solving the RTE.19 In an MC simulation, photons are simulated in packets,
characterized by a “weight” initialized as 1 and updated as the photon packet traverses through
the domain. Unlike the DE, MC simulations are based on repeated random samplings of the
probability of photon absorption and scattering processes, thereby requiring the simulation
of large numbers of photons to produce convergent results. In recent years, the high speed
of graphics processing units (GPUs) and the “embarrassingly parallelizable” nature of MC have
allowed the cost of computation to drop dramatically, resulting in hundreds or even thousands-
fold speed improvements compared with traditional MC methods.20,21

Currently, several commercial optical design software packages support MC-based photon
simulations, such as Zemax® (Zemax LLC, Kirkland, Washington, United States), and
TracePro® (Lambda Research, Littleton, Massachusetts, United States). These commercial opti-
cal design tools usually have an interactive computer-aided design (CAD) based graphical user
interface (GUI), easy-to-use parameter settings, and intuitive three-dimensional (3D) renderings
of simulation results. These features have made such optical design software attractive to com-
mercial users and research laboratories. However, commercial software often lacks advanced
features such as GPU acceleration and cloud computing support; they also lack the most
up-to-date MC simulation techniques such as shape-based and mesh-based MC methods.10

In addition, expensive licensing costs limit the widespread use of these tools.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-2 August 2022 • Vol. 27(8)



On the other hand, open-source MC simulators have seen tremendous growth over the last
decade, offering superior simulation speed, advanced capabilities, and versatile algorithms when
compared with their commercial counterparts. Mesh-based Monte Carlo (MMC) and voxel-
based MC simulator Monte Carlo eXtreme (MCX), first reported in 2010 and 2009,10,22 respec-
tively, are two examples of advanced, open-source MC software packages that have attracted
sizable user communities. In particular, MMC utilizes tetrahedral meshes, similar to those used
by an FEM DE solver, to simulate complex anatomical structures with high flexibility and excel-
lent accuracy when compared with voxel-based domain representations. In several reported
benchmarks,22 MMC outperforms voxel-based MC in accuracy when simulating curved boun-
daries, yet it requires only a fractional memory footprint. Recently, MMC gained GPU accel-
eration and added support for a wide range of CPUs and GPUs via the OpenCL programming
framework23 and Compute Unified Device Architecture (CUDA).24 It is worth mentioning that
MMC remains an actively developed open-source project that is constantly being updated, grow-
ing in both new features and accuracy. For example, Yao et al. added wide-field MMC,25 which
is particularly important for supporting the active development of spatial frequency domain im-
aging (SFDI) techniques in recent years. In addition, the implicit MMC algorithm (iMMC),
proposed by Yuan et al.,26 combines shape-based modeling and mesh-based anatomical models
to enable simulations of extremely complex tissue structures, such as dense vessel networks.

Regardless of the method used, whether it be MMC-based MC simulations or FEM-based
DE solvers, a tetrahedral mesh-based anatomical model is typically required. It is important to
note that, to obtain accurate results in either approach, high-quality meshes must first be gen-
erated. Open-source 3D meshing tools, such as Iso2Mesh,27 Computational Geometry
Algorithms Library (CGAL),28–30 and TetGen,31 although widely adopted and capable of creat-
ing complex, high-quality mesh models from 3D medical images, are largely designed for used
in a command-line interface. Therefore, less-experienced users often encounter a steep learning
curve when adopting these meshing tools for their applications. In addition, manually editing
meshes or interactively fine-tuning mesh features in these command-line oriented meshing tools
can be quite challenging or impossible. On the other hand, developments in the field of 3D
modeling and animation, driven by the game and movie industries, promise easy-to-use and highly
interactive shape-based modeling software tools. This results in widely disseminated open-source
3D modeling software, such as Blender,32 and commercial tools, such as Cinema-4D (C4D,
Maxon Computer GMBH, Friedrichsdorf, Germany) and Maya (Autodesk, San Rafael,
California, United States). Most of these 3D modeling tools provide visual interfaces and com-
prehensive model editing capabilities that are missing from typical meshing tools.

We would like to highlight Blender because it is a free and open-source 3D modeling suite,
widely used in the field of animation and digital media creation. It supports a comprehensive 3D
modeling pipeline: creation, animation, simulation, rendering, and motion tracking. In 2020
alone, Blender was downloaded over 14 million times. Supported by a large and active com-
munity, Blender greatly reduces the barriers to entry for beginners32 in 3D modeling. To accom-
modate advanced programming needs, a Python application programming interface (API)
published by Blender—bpy—is available for users to programmatically control Blender or
develop add-ons. Over the past several years, Blender-based software packages for biomedical
applications have been developed. Examples include BioBlender and ePMV.33,34 The majority of
these projects specifically focus on the processing and rendering of object/shape surfaces; there-
fore, a triangular surface mesh is typically used in their processing pipelines. These tools typ-
ically do not offer the capability to tessellate the interior space of objects, which is the essential
task of 3D mesh generation and mesh-based light transport simulations. A noticeable gap
between the surface-oriented 3D modeling software and the need to discretize and quantitatively
simulate the interior space bounded by these surfaces exists. Therefore, creating an interface
between Blender and 3D mesh generators and multiphysics simulators could readily transform
Blender into a powerful 3D quantitative simulation platform and benefit an array of computa-
tional imaging domains.

There are several Blender-based add-ons that implement 3D voxelated volumetric data ren-
dering, e.g., OrtogOnBlender,35 which can visualize digital imaging and communications in
medicine (DICOM) files in Blender and extract surface meshes from the DICOM image stack.
However, these add-ons do not support tetrahedral mesh generation and thus can not be directly

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-3 August 2022 • Vol. 27(8)



used for subsequent model-based analyses. In addition, the lack of fine-grained mesh quality
control can also create challenges for performing any quantitative modeling beyond rendering.
In this work, Iso2Mesh, an open-source MATLAB/GNU Octave-compatible mesh generator, is
used to generate high-quality tetrahedral meshes27,36 using the initial surface models created by
Blender. It is worth highlighting that GNU Octave is a free and open-source high-level numerical
analysis platform that is largely compatible with MATLAB. Octave also provides a Python API
named oct2py to interface with Python. Using the combination of oct2py and bpy, one can effi-
ciently bridge between Blender and Octave using Python as the “glue” language. The goal of this
work is to develop an interactive interface between MMC/Iso2Mesh and Blender. This interface
needs to have the ability to interactively create and visualize the model as well as to automate the
mesh generation and execution of mesh-based MC photon simulations via easy-to-use settings.

Here, we present a tutorial to introduce to the community an open-source Blender add-on—
BlenderPhotonics—for performing advanced tissue-optics MC simulations. It combines the visual
modeling capabilities of Blender,32 the meshing capabilities of Iso2Mesh,27 and the light simu-
lation capabilities of MMC22,23 to allow users to visualize and interactively edit the model while
also configuring light simulation in an intuitive interface. In addition, we show examples of how to
create realistic tissue models, including creating highly complex human hairs and rough surfaces,
using this tool. BlenderPhotonics is written in the Python and Octave languages and has a modular
file structure. Overall, BlenderPhotonics makes the optical simulation pipeline much easier to use
and opens the doors for creating highly sophisticated tissue models for future studies.

In the following sections, we first introduce the overall workflow of BlenderPhotonics, fol-
lowed by the implementation details of each processing step. In Sec. 3, we demonstrate several
showcases on 3D light simulations from each of the three supported input data types, including
(1) constructive solid geometry inputs using 3D shape primitives, (2) triangular surface models,
and (3) 3D medical image volumes. Furthermore, we demonstrate the possibility of creating life-
like complex tissue models and perform quantitative analyses in two advanced examples, show-
ing users (1) how to simulate skins of different roughness levels using rough-surface creation and
(2) how to simulate complex human hairs using the hair/particle systems in Blender. Finally, we
summarize the strengths and limitations of the software and discuss the plan for future extensions
of this platform.

2 BlenderPhotonics Interface Design and Key Features

The four major functions of BlenderPhotonics include (1) creating tetrahedral meshes from
3D objects (Blender2Mesh), (2) importing and processing externally created surface meshes
(Surface2Mesh), (3) creating surface and tetrahedral meshes from 3D volumetric images and
arrays (Volume2Mesh), and (4) executing mesh-based MC light transport simulations and ren-
dering results (Multiphysics Simulations). Correspondingly, we design this add-on in a modular
fashion. Although these four tasks are logically sequential, each task can work independently as
long as the appropriate input is provided. One can selectively run only one of the tasks or the
entire pipeline, starting from shape modeling to light simulation.

In the next few sections, we discuss the processing pipelines for various user input data types.
To unambiguously describe the intermediate mesh data generated through the pipeline, here,
we use “surface mesh” [Fig. 1(a)] to refer to a shell of triangular (known as “tris” in Blender),
quadrilateral (known as “quads” in Blender), polygonal (known as “N-gons” in Blender) patches,
or parametric two-dimensional (2D) manifolds that only discretizes the surface shape of the
domain regions; we use “volume mesh” [Fig. 1(b)] to describe a tetrahedral volumetric mesh
that discretizes both the surface as well as the interior space of the 3D domain; we also use the
word “regional mesh” [Figs. 1(c) and 1(d)] to refer to subregions of the volume mesh that are
tagged with unique labels to represent tissue-specific regions. Most 3D shape primitives supported
in Blender, such as cubes, spheres, and cylinders, are defined as a surface mesh internally or can
be converted to a surface mesh. Both the volume mesh and regional mesh are tetrahedral mesh
models containing internal nodes, created by Iso2Mesh/TetGen31 using surface meshes as inputs.
When the input surface mesh contains multiple objects or surface compartments (i.e., multiple
enclosed regions), the tetrahedral mesh elements inside each compartment are assigned a unique
label, typically an integer number, and the tetrahedral mesh of each label is a regional mesh.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-4 August 2022 • Vol. 27(8)



2.1 Overall Workflow

The overall workflow of this add-on is illustrated in Fig. 2. BlenderPhotonics contains three key
steps. The first step is the construction of a surface mesh that is made of one or multiple objects.
Users can create such surface models using the built-in shape objects provided by Blender or
importing from user-defined data files as input. The second step is volume mesh generation and
region labeling. The software exports the vertices and faces of the surface mesh generated from
the first step and calls Iso2Mesh/TetGen to populate tetrahedra to fill the enclosed compartments
of the surface mesh—each region is uniquely numbered. To permit mesh density and quality
fine-tuning, a simple dialog is provided to allow for adjusting meshing parameters interactively,
followed by regeneration of the volume mesh. The third step is mesh-based MC light simulation

Fig. 1 Different types of shape constructs used in Blender and BlenderPhotonics: (a) Blender
objects (surfacemesh) made of quadrilateral faces (“quads”) or polygons (“N-gons”), (b) volumetric
tetrahedral mesh, (c) regional mesh of the cube excluding the sphere region (cropped), and
(d) regional mesh of the center sphere.

Fig. 2 Overall workflow diagram of BlenderPhotonics.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-5 August 2022 • Vol. 27(8)



using the volume or regional meshes generated from the second step. The optical properties of
each tissue region and the light source parameters are configured visually via the “custom prop-
erty” in Blender, and an MMC compatible configuration data structure is generated and used as
the input to launch the MMC simulation. The final light fluence distribution generated from such
simulations, defined as floating-point fluence-rate values across the volume mesh, is then read in
Blender and rendered for interactive visualization.

The modular software structure shown in Fig. 2 makes it effortless for future extensions.
If desired, one can potentially replace the MMC simulation module with another mesh-based
MC simulator, such as FullMonteCUDA.24 Only lightweight code changes are required; these
include adding additional “custom properties” in Blender, exporting these additional user inputs
in the format acceptable by the target simulator, and importing the output data back to Blender
for rendering.

2.2 Installation

The installation of BlenderPhotonics requires setting up six software components: (1) Blender
v2.8 or newer versions, (2) GNU Octave 4.2 or newer versions, (3) oct2py Python module (for
interfacing Blender with GNU Octave), (4) jdata Python module (for reading/writing data
exchange files),37 (5) Iso2Mesh toolbox (for 3D mesh generation), and (6) MMCLAB toolbox
(for photon MC simulation). Two optional components can be installed, including (1) ZMat
toolbox (for reading/writing internally compressed mesh files) and (2) bjdata Python module
[for reading binary JavaScript Object Notation (JSON)-based37 data files]. All required software
components are open source and are widely available. The step-by-step installation instructions
can be found in Sec. 2.2 of the README file on the Github repository.38

In our BlenderPhotonics package,38 we also provide a fully automated installation shell-script
for a Debian/Ubuntu-based Linux system. By simply replacing the apt command with yum or
port, the attached installation script can be used to install BlenderPhotonics on Fedora Linux
and Mac OS, respectively. For Windows users, although running the above shell script is
possible if one has preinstalled Cygwin64, the apt command must be replaced because
it is not supported on Windows. A Windows user may use winget install -e –id
BlenderFoundation.Blender, winget install -e –id GNU.Octave, and
winget install -e –id coti.mcxstudio in an administrator command window to
install the needed software components, followed by installing the Python modules and
Octave toolboxes manually.

Once all of the software components are successfully installed, one is able to start Blender,
click on the menu “Edit/Preferences,” choose “Add-ons” in the Blender Preferences window, and
search for “BlenderPhotonics”; the downloaded add-on should be listed (or use the “Install”
button to browse a locally downloaded zip package). To enable BlenderPhotonics, one simply
clicks on the check-box until a check-mark is shown. Although BlenderPhotonics has been
tested on Blender 2.83, 2.92, and 3.0, the later versions are recommended because it supports
an “exact” shape intersection solver starting from version 2.9. Aside from supporting GNU
Octave, BlenderPhotonics also allows users to run Iso2Mesh and MMC via MATLAB
(MathWorks, Natick, Massachusetts, USA) in the backend if one has installed the proprietary
matlab.engine Python interface. One can choose between these two backends by a simple toggle
button at the top of the BlenderPhotonics interface (see Fig. 3).

2.3 GUI Design

Ease-of-use is one of the key design requirements of BlenderPhotonics. To allow novice users to
conveniently access all of the key functions of BlenderPhotonics, we created a simple function
panel using Blender’s plug-in interface; see Fig. 3. In addition, it is desirable that a user is able to
individually run any one of the functions. The independence of the task stages makes transferring
or restarting a portion of the processing pipeline possible—e.g., using a portable computer to
create the mesh model and then running GPU-based simulations on a dedicated server. The main
interface allows for browsing volume data files, creating a volumetric mesh, importing regional
mesh, and executing MMC simulation with only a single click.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-6 August 2022 • Vol. 27(8)



2.4 Data Inputs and Model Creation

BlenderPhotonics can create complex surface models (i.e., step 1 in Fig. 2) based on various
forms of user inputs. Overall, there are three types of inputs that can be used for model creation.
First, a user can directly add one or multiple built-in shape objects, such as cubes and spheres,
using Blender and create a complex domain via Blender’s vastly rich built-in tools, such as
Boolean modifier, bisect, knife tools, etc., and then create triangular/tetrahedral meshes via the
“Blender2Mesh”module in BlenderPhotonics (see Fig. 3). Second, a user can import a triangular
surface mesh pregenerated by other tools, handled by the “Surface2Mesh” module in
BlenderPhotonics. Third, a 3D voxelated image, in the form of a Neuroimaging Informatics
Technology Initiative (NIfTI),39 JData37/JNIfTI,40 or a MATLAB/Octave .mat file, can be
imported to create an image-derived surface mesh as supported in the “Volume2Mesh” module
in BlenderPhotonics. Regardless of the input data type, the result of this step is a surface mesh
defined by two data structures—vertices and faces. The vertices of the surface mesh are a float-
ing-point array of dimensions Nn × 3, with the three columns representing the x∕y∕z coordi-
nates, respectively, of a vertex in the surface mesh, where Nn is the total number of nodes.
The faces of the surface mesh are defined as a 2D integer array of size Ne × 3, with each row
containing three integer indices of the three nodes that form the triangular patch, where Ne is the
number of triangles. Only closed (i.e., watertight) surface mesh models are accepted because it is
required for the subsequent tetrahedral mesh generation and MC simulation. A user should also
pay attention to the complexity, measured by the number of nodes and triangles, of the surface
model. Obviously, exceedingly dense surface meshes can lead to very dense volumetric mesh,
resulting in excessively long meshing time and subsequent MC simulation run-times. A best
practice is to create the surface mesh with the minimal number of nodes/triangles without losing
the accuracy of the domain boundaries.

Blender is a vastly versatile environment for 3D shape modeling and domain creation, and
how to use most of the functionalities of Blender for complex shape creation is beyond the scope
of this tutorial. Readers should browse the large number of tutorials created by Blender’s devel-
opers and user community to learn how to effectively build complex 3D models using Blender.

Fig. 3 BlenderPhotonics main interface and parameter dialogs (pointed by arrows) for each core
feature.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-7 August 2022 • Vol. 27(8)



It is important to note that Blender separates built-in objects into (surface) mesh and nonmesh
types, in which the former has well-defined node coordinates and face node indices and the latter
may only have implicit surface definitions without explicitly defining surfaces or vertices. In
many cases, nonmesh objects, such as a “metaball” object, can be converted to a mesh object
by Blender during export. Other advanced built-in object types have not been tested.

A variety of surface mesh files can be imported to Blender. Blender supports most of the
major 3D model files, such as OBJ geometry (.obj), STereoLithography (.stl), Filmbox (.fbx)
formats, among others. Using BlenderPhotonics’s “Surface2Mesh” module and Iso2Mesh, we
have also added support to import triangular surfaces stored in JSON/text-JMesh (.json or .jmsh),
UBJSON/binary JMesh (.bmsh),41 object file (.off), and Infria MEDIT (.medit) formats. In addi-
tion, Blender, and subsequently BlenderPhotonics, can have extended file format support when a
user installs appropriate add-ons to read/write a customized data format. For external model files,
most models defined in these inputs contain the required vertex and face information. Similar to
the model creation process, if there are objects of nonmesh types in the file, BlenderPhotonics
automatically converts these objects to mesh types.

2.5 Data Exchange between Blender and Octave via Portable JSON/JMesh
Files

The data exchange between Blender and Octave is achieved via the combination of Blender’s
Python API bpy, the Octave-Python interface oct2py, JSON-based data exchange Python
module jdata, and the built-in JSON parser in Iso2Mesh. Although the default data exchange
scheme in oct2py is achieved using MATLAB’s proprietary .mat format, we intentionally
adopted the JSON-compatible JMesh format41 (.jmsh) because of the following advantages:
(1) JMesh is human-readable whereas MATLAB.mat file is not, (2) JMesh is a plain JSON file
that can be readily read/written in nearly all programming environments with lightweight parsers
(many are built-in to the programming languages, such as Python, Perl, MATLAB, and
JavaScript), (3) JMesh is directly editable and can be version-controlled whereas .mat files are
binary only, and (4) last but not least, JMesh/JSON files can be readily used for web applications
or hierarchical databases (such as NoSQL databases) whereas .mat files require specialized pars-
ers that are not widely available. Wewant to highlight that JMesh is not a new format, but rather a
set of JSON-compatible “name”/“value” pairs representing mesh-based data structures. Existing
mesh data stored in other formats, such as Visualization Toolkit (VTK) format,42 can be poten-
tially converted to JSON/JMesh and used in BlenderPhotonics via Octave-based parsers or exter-
nal converters.

In Fig. 4, we use a simple tetrahedral mesh (of a unit cube) containing 8 nodes, 12 surface
triangles, and 6 tetrahedral elements, shown in Fig. 4(a), as an example to illustrate the simplicity
of using JSON/JMesh data annotations to store mesh data. Because the JMesh format is built
upon the JData specification37,43—a lightweight standard using JSON to annotate scientific data,
JMesh mesh data constructs also support strongly-typed array [see Fig. 4(c)] and record-level
binary data compression43 [see Fig. 4(d)]. We strongly encourage developers of other biopho-
tonics tools to consider adopting such a format in their applications to achieve easy interoper-
ability between multiple tools and ease in future extensions.

2.6 Tetrahedral Mesh Generation from Blender Scenes

The surface mesh models created in Blender, consisting of a single or multiple objects, are used
as the input for the next step—tetrahedral mesh generation. The mesh generation process con-
sists of two parts: surface mesh preprocessing and tetrahedral mesh generation. The preprocess-
ing of the surface mesh is achieved in Blender. First, Blender converts all nonmesh-type objects
to mesh types to get well-defined points and faces. Other types of objects in the scene that cannot
be converted into mesh objects, such as light sources and cameras, are excluded. All remaining
objects are merged into one surface mesh object and checked for the presence of self-intersecting
triangles. When self-intersection exists, Blender automatically inserts new points on the inter-
section line and split the faces, resulting in multiple subregions. At the end of the preprocessing
step, a watertight nonself-intersecting triangular surface mesh is generated.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-8 August 2022 • Vol. 27(8)



The preprocessed surface data are subsequently sent to Octave for mesh generation.
Iso2Mesh is used to complete this step. First, the vertex coordinates and face information of
the preprocessed model are saved as a .jmsh file and then loaded to Octave. In addition, several
meshing parameters are prompt in a dialog (see Fig. 3) to the user to adjust the density of the
output mesh, including (1) maximum tetrahedral element volume36 and (2) percentage of surface
mesh edges being kept after simplification, as defined in Iso2Mesh.36 The latter parameter is
passed to a mesh simplification algorithm implemented in the CGAL library28,29 based on the
Lindstrom–Turk algorithm.44 The former parameter is passed to TetGen to set the maximum
volume of the generated tetrahedral mesh. The two parameters act together to control the density
of the generated mesh. In Octave, the inputs for Iso2Mesh are node coordinates, face data, and
mesh generation parameters. In addition, Iso2Mesh calls TetGen (version 1.5) for mesh gener-
ation and region labeling. After tetrahedral mesh generation, Iso2Mesh returns three output data
arrays, namely, “node,” “face,” and “elem” (see Fig. 5). They correspond to the vertices of the
tetrahedral mesh, the faces triangle node indices, and the vertex indices of each tetrahedron,
along with a label denoting the region to which it belongs, respectively. The tetrahedral mesh
data are cached in a separate .jmsh file for subsequent calls. In addition, the exterior triangular
surface for each tissue region/label is extracted and stored in a regional mesh .jmsh file to be
loaded in Blender.

(a)

(b)

(c)

(d)

Fig. 4 Sample JMesh representations of (a) a unit-cube (node numbering shown in circles). A
JMesh file written with (b) plain JSON arrays, (c) JData-based annotated array, and (d) com-
pressed binary array are supported and parsed by our Python and MATLAB toolboxes. Note that
JMesh node indices (such as in “MeshTri3” and “MeshTet4” constructs) start from 1.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-9 August 2022 • Vol. 27(8)



The successful generation of a tetrahedral mesh readily enables a user to perform an array of
advanced modeling tasks, such as performing finite-element (FE)- or boundary-element (BE)-
based analyses to solve the forward or inverse problems in the domains such as mechanics,
computational electromagnetics, computational optics, computational fluid dynamics, etc.
The created volume and surface meshes can be exported from Blender in the format that is
acceptable by specialized computational physics or multiphysics solvers, such as ANSYS,
ABACUS, COMSOL, etc. Even if a user does not have the need to perform subsequent
numerical analyses, Blender/BlenderPhotonics offers efficient visualization, manipulation, and
advanced transformation to a surface or tetrahedral mesh, making rendering and processing com-
plex 3D data easy.

2.7 Tetrahedral Mesh Generation from 3D Volumetric Images

For researchers in the fields of medical imaging and biophotonics, creating simulations from 3D
volumetric imaging data is a highly sought-after feature, but only limited tools are available for
medical-image-based 3D mesh generation.27 Iso2Mesh is one of only a few tools36 that support
this type of processing. In BlenderPhotonics, a dedicated submodule named “Volume2Mesh” is
provided, as shown in Fig. 3. This module calls Iso2Mesh to automatically tessellate a 3D vol-
ume stored in the NIfTI,39 JNIfTI,40 or MATLAB.mat formats, and output a surface mesh model
for subsequent processing. NIfTI is an open standard to store MRI/fMRI scans and is widely
supported in the field of neuroimaging; JNIfTI is a standardized40 JSON wrapper43 to the NIfTI
format to enable human-readability, easy extension, and data exchange between neuroimaging
tools. By calling the streamlined mesh generation function in Iso2Mesh, the 3D volume data
from a JNIfTI/NIfTI file can be preprocessed to create both tetrahedral volume mesh as well as
surface mesh that is at the outer surface of the volume mesh. Multilabeled 3D volume can also be
directly processed by Iso2Mesh to create the surface mesh model. Each labeled subregion is
saved as a separate surface mesh record inside the exchange file. Unlike the previous two input
types, the volume mesh and the regional mesh are generated simultaneously when a volume data
file is imported into Blender. Nonetheless, a surface mesh extracted from the volume and
regional mesh is displayed in Blender to allow for manual editing and further manipulation in
case additional complex features, such as growing hairs as shown in the later section, are desired.

To use this feature, one simply clicks on the file browser button under the “Volume2Mesh”
section of the BlenderPhotonics interface. This allows users to browse a text-JNIfTI (.jnii),
binary-JNIfTI (.bnii), NIfTI (.nii/.nii.gz), or MATLAB.mat file stored in a local folder. In addi-
tion to loading a volume image from the user’s local disk, one can also type in a URL pointing to
an online JNIfTI/NIfTI/.mat file. BlenderPhotonics automatically downloads the online data file
and reads the content. After either a valid file path or URL is supplied, one can click on the
“Convert 3D image file to mesh” button. A simple parameter dialog, shown in the middle of
Fig. 3, pops up to allow users to set key meshing parameters, such as the upper-bound of tetra-
hedron volume (Vmax,

31,36 in cubic length unit), upper-bound of the Delaunay sphere radii of the
surface triangles (Rmax,

28,36 in voxel unit), maximum allowed deviation (in voxel unit) from the

Fig. 5 Mesh data structure exchanged between Blender and Iso2Mesh.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-10 August 2022 • Vol. 27(8)



voxelated boundary and mesh extract methods, including “cgalmesh,”28 “cgasurf,”29 and
“simplify.”27 Clicking on the “OK” button signals Iso2Mesh in Octave to start mesh generation.
If successful, the regional mesh is loaded to Blender for inspection. If the mesh is not satisfac-
tory, one can adjust the meshing setting and recreate the mesh.

2.8 Mesh-Based Monte Carlo Photon Simulation Workflow

In this work, we are particularly interested in solving the RTE inside complex media using the
MC method. Our previously developed MMC solver has already attracted a large and active user
community consisting of students, researchers, and academics from biomedical optics and
optical neuroimaging domains.22 However, the lack of an intuitive simulation domain prepara-
tion interface makes it difficult for less-experienced users to use. With the development of
BlenderPhotonics, we specifically address this issue by interfacing the 3D mesh generation out-
put from BlenderPhotonics with MMC and create a streamlined MC simulation environment in
Blender. The MC simulation step requires three substeps: (1) domain preparation, (2) execution
of photon simulation, and (3) output data visualization.

The domain preparation stage refers to the process of setting up the necessary optical sim-
ulation parameters, including optical properties for each tissue label, light source settings,
and global simulation settings, such as total photon numbers, etc. After the completion of the
mesh generation step above, Blender/BlenderPhotonics loads and visualizes regional meshes
while assigning four custom properties for each region, i.e., μa (1/mm), μs (1/mm), g, and n
(Fig. 6). At the same time, a light source is added to the 3D domain. The light source has several
user-customized properties, such as 3D position, orientation, source type, and total photon
number to be simulated (Fig. 6). A user needs to set the optical parameters for each region
of the mesh, place the light source in the desired position and adjust its orientation, and
finally set the simulated photon number for the light source. It is important to note that the
default unit of the domain is assumed to be mm in BlenderPhotonics. Once a user completes
these setup tasks, he/she can then start the optical simulation using a dedicated button on the
BlenderPhotonics panel.

Fig. 6 Optical parameters and light source configuration interface. The panels for setting optical
parameters for region 1 (right) and region 2 (middle) are shown at the bottom; the panel for setting
the source is shown at the middle-top.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-11 August 2022 • Vol. 27(8)



When a photon simulation starts, BlenderPhotonics automatically reads the optical param-
eters of all-region models in Blender and the light source information and passes it into Octave.
Octave automatically generates a configuration file for the light simulation based on the supplied
data. The mesh data of the simulation domain is derived from the mesh data saved during the
tetrahedral generation stage. Other critical simulation parameters are passed from the user’s set-
tings during the preparation stage. In particular, the light source direction is stored in Blender as a
quaternion. In Octave, the direction in quaternions is used to compute the standard vector form.45

The total run-time of the MMC simulation depends on the model complexity, the total number of
photons to be simulated, and the optical properties. A progress bar, alongside other simulation-
related information, is printed in a command-line window when MMC is being executed.

After the MMC simulation is completed, the fluence map computed over the 3D mesh is
saved into a JMesh file and loaded back to Blender for visualization and postprocessing.
The fluence map is converted in the log-10 scale for better rendering of the simulation results.
The log-scaled fluence intensity map is assigned as the “vertex weights” in Blender and rendered
in pseudocolors using a built-in color map.

2.9 BlenderPhotonics File Structure and Optimization

BlenderPhotonics interacts with three types of files—Python scripts, Octave scripts, and intermedi-
ate files. All Python scripts are placed in the add-on’s main directory. Octave scripts are stored
in the “script” subfolder inside the add-on’s directory. All intermediate outputs and data exchange
files (JMesh files) are stored inside a temporary directory—for Linux/MacOS, this folder is
typically /tmp/iso2mesh-USER/blenderphotonics, and for Windows, this is typically
C:\Users\USER\AppData\Local\Temp\iso2mesh-USER\blenderphotonics,
where “USER” is replaced by the actual user account name.

In terms of run-times, BlenderPhotonics does not have a direct impact on either those of
Iso2Mesh mesh generation or MMC light simulation because they were performed in Octave.
However, when writing and reading large numbers of surface mesh files, there is a noticeable
data transfer overhead. Therefore, when loading the mesh data to Blender for inspection or
rendering MMC simulation results, we only extract the surfaces of the regional mesh to reduce
such overhead.

3 BlenderPhotonics Application Showcases

In this section, we first walk readers through three basic benchmarks to showcase the powerful
yet easy-to-use processing pipleines of BlenderPhotonics—one for each of the three accepted
input data types, including (1) “SkinVessel” benchmark for built-in shape-based modeling,
(2) “Colin27” benchmark for handling surface-mesh-based inputs, and (3) “Digimouse” bench-
mark for 3D volumetric data-based modeling. For each benchmark, we first present an overview
of the plug-in’s handling of the three models in operation and then report the screen captures
following each processing step in BlenderPhotonics/Blender. Finally, we give readers two
advanced examples to demonstrate the enormous possibilities to create complex and realistic
tissue models using the rich arsenal of 3D shape modeling tools offered by Blender. These two
examples include (1) rough-surface modeling of skins and (2) modeling complex human hairs,
and we show how these complex realistic tissue features impact optical measurements.

3.1 “SkinVessel” Benchmark—Creating Simulations from Blender Objects

In the first example, we show mesh generation and light simulation of multilayered skin tissues
with an embedded blood vessel, adapted from the “SkinVessel” benchmark initially created by
Dr. Steven Jacques for his MC software mcxyz.46 The model consists of a multilayered slab
structure, derived from a combination of a cube, dissecting planes, and a blood vessel created
from a cylinder object in Blender; see Fig. 7. From bottom to top, the layers are named “Low-
slab,” “Mid-slab,” and “High-slab,” respectively. The geometric and optical parameters of each
region are reported in Table 1. The construction process of the model is shown in Figs. 7(a)–7(c).

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-12 August 2022 • Vol. 27(8)



To create this domain, we first use the menu “Add/Mesh” in the object-mode, to add a
“Cube,” two “Plane” objects (plane-1 and plane-2), and a “Cylinder.” For each object, in the
popup property dialog, we set their sizes (depth for the cylinder), offsets x0; y0; z0, rotation
angles ϕx;ϕy;ϕz relative to each axis, and other properties according to Table 2. Here, we set
all objects lengths in voxel unit to match the original benchmark made for mcxyz; the voxel size
(in mm) is specified by the “unitinmm” property shown in Table 2. This results in a three-layered
structure similar to Fig. 7(a). Once this model is created, one can click on the “Preview surface
tesselation” button in BlenderPhotonics’s interface and inspect the tessellated surface mesh, as
shown in Fig. 7(b). One should see no self-intersecting triangles, and each compartment of

Fig. 7 Intermediate steps of creating the SkinVessel benchmark: (a) after adding Blender objects,
(b) after clicking “preview surface tesselation,” (c) output regional mesh, and (d) fluence rate cross-
section generated by MMC photon simulation.

Table 1 Geometric and optical parameters of the “SkinVessel” benchmark.

Regions [zmin, zmax] (mm) Radius (mm) μa (1/mm) μs (1/mm) g n

Low-slab [0.00, 0.10] — 0 1 1 1.37

Mid-slab [0.10, 0.16] — 1.657 37.594 0.9 1.37

High-slab [0.16, 1.00] — 0.046 35.654 0.9 1.37

Cylinder 0.50 (center) 0.1 23.054 9.398 0.9 1.37

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-13 August 2022 • Vol. 27(8)



the surface must be watertight. After verification, select the menu “Edit/Undo” to return to the
polyhedral surface model. In the next step, one clicks on the “Convert scene to tetra mesh” button
on the BlenderPhotonics interface. In the shown dialog, we set the maximum tetrahedron volume
to 30 (cubic length unit), optionally uncheck the “Convert to triangular mesh” while leaving
other settings to default values. Clicking on “OK” allows Blender to call Iso2mesh and
TetGen to create a tetrahedral mesh of 109,110 nodes and 623,608 tetrahedra. Once completed,
the volume mesh is loaded into the domain for inspection. This usually takes about 5 to 10 s.

The next step is to configure an MMC simulation domain. To do so, one clicks on the
“Load mesh and setup simulation” button in the “Multiphysics Simulations” section of
BlenderPhotonics’s panel. This reloads the generated mesh in the previous step in the form
of a regional mesh (instead of a volumetric mesh) and names each tissue region as “region_i”
in the object list [Fig. 7(c)]. It also attaches default optical properties to each regional surface.
In addition, a “light” object named “source” is also added to the scene positioned above the
domain’s center. The custom property setting panels for each object are similar to those in
Fig. 6. One should set the optical and source properties following Table 1. In this example,
we use the settings for “source-1.” Once completed, the domain is ready for the next step—
MMC simulation—which is achieved conveniently by a single click on the “Run MMC photon
simulating” button. In the pop-up dialog, one can adjust the simulation setting, such as maximum
time-gate, reflection settings, normalization, or choosing different GPU devices according to
MMC’s command-line options. Clicking on the “OK” button starts the MMC simulation in the
background. Once the simulation is completed, the computed light fluence map is loaded to the
Blender rendering window and displays as “vertex weight” using a default color map [Fig. 7(d)].

3.2 “Colin27” Benchmark—Creating Simulations from Surface Meshes

In the second example, we demonstrate the steps needed to create tetrahedral mesh models and
run MMC simulations using precreated surface mesh models. The anatomical model was derived
from a widely used human brain atlas, known as the “Colin27” atlas. A set of previously
generated22 triangular surface meshes containing four closed tissue surfaces—scalp, CSF, gray
matter (GM), and white matter (WM)—are saved in the form of a JSON/JMesh file and loaded to
Blender using the “Import surface mesh” button of BlenderPhotonics; a cropped input surface
mesh can be found in Fig. 8(a). By a single click on the “Convert scene to tetra mesh” button in
BlenderPhotonics and setting 100 as the maximum element size, one can create a tetrahedral
mesh with a cross-sectional plot shown in Fig. 8(b). Next, clicking on the “Load mesh and setup
simulation” button, one can set the displayed regional meshes [Fig. 8(c)] using the optical param-
eters listed in Table 3, with the light source position, light source direction, and photon number
being [75.76, 66.99, 168.21] mm, [0.1636, 0.4569, −0.873] mm, and 108, respectively. Finally,
a single click on the “Run MMC photon simulation” button starts the MMC simulation using
the input atlas and loads the computed fluence map back to Blender once the simulation is
completed [see Fig. 8(d)].

Table 2 Blender properties set for each object to build the “SkinVessel” simulation.

Objects Size/depth x0 y0 z0 ϕx ϕy ϕz Other property settings

Cube 200 100 100 100 0 0 0 —

Plane-1 200 100 100 20 0 0 0 —

Plane-2 200 100 100 32 0 0 0 —

Cylinder 200 100 100 100 90 deg 0 0 Radius = 20, cap fill type = nothing

Source-1 50a 100 100 −10 180 deg 0 0 srctype = “disk,” unitinmm = 0.005

Source-2 50a 100 50 −50 150 deg 0 0 srctype = “disk,” unitinmm = 0.0005

aThis is achieved by setting the first element of the “srcparam1” property. All length units are in voxels to match
the original mcxyz benchmark.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-14 August 2022 • Vol. 27(8)



3.3 “Digimouse” Benchmark—Creating Simulations from Segmented
Volumetric Images

In this example, we show the processing steps to convert a 3D volume into a mesh model and
subsequently run an MC simulation. The benchmark is derived from a public dataset known as
the “Digimouse” atlas, a segmented CT image of size 190 × 496 × 104 voxels with an isotropic
voxel size of 0.8 mm. The original CT images of the Digimouse atlas are converted to a JSON/
JNIfTI file. To reproduce this example, one can directly type the file link47 in the JNIfTI file field

Fig. 8 Intermediate steps of creating the Colin27 benchmark: (a) cropped input surface mesh,
(b) cropped tetrahedral mesh, (c) region mesh and source, and (d) cropped fluence overlaid
on the regional mesh.

Table 3 Optical properties for each tissue type in the Colin27 benchmark.

Tissue μa (1/mm) μs (1/mm) g n

Scalp 0.019 7.818 0.89 1.37

CSF 0.004 0.009 0.89 1.37

GM 0.02 9.0 0.89 1.37

WM 0.08 40.9 0.89 1.37

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-15 August 2022 • Vol. 27(8)



in BlenderPhotonics’s interface. One can also download this file and browse it on the local disk.
Next, one clicks on the “Convert 3D image file to mesh” button and sets the maximum element
volume to 100, and the volume image is loaded and processed in Iso2Mesh to create a tetrahedral
mesh11 made of 21 tissue types [Fig. 9(b)]. The regional mesh for each tissue type [Fig. 9(a)] is
then loaded back to Blender, and the optical parameters of each region are assigned manually in
the Blender property dialog, according to those listed in Table 4. The light source position, light
source direction, and photon number are set to [40, 160, 80] mm, [0, 0, −1] mm, and 108, respec-
tively. One also sets the “unitinmm” property of the source to the input voxel size, which is
0.8 (mm) in this case. The tetrahedral mesh of the atlas consists of 72,815 vertices and
407,739 tetrahedra. The final MMC photon simulation results are shown in Figs. 9(c) and 9(d).
To demonstrate the advanced rendering capability of Blender, we show two ways of creating
cross-sectional images of the output. In Fig. 9(c), we first box-select a region of faces in the edit-
mode and press “delete” on the keyboard. This creates a trimmed mesh showing the internal
surfaces with the associated vertex-weight (fluence values). However, to create a flat cross-
section, one can select “Mesh/Bisect” in the edit-mode and draw a straight line across the mesh.
In the “Bisect” setting dialog, one can choose to remove either side of the bisecting plane and fill
the cross-sectional plane with flat patches. The result is shown in Fig. 9(d). An even faster way to
crop a mesh is to use the view-port cropping feature by pressing shortcut “Alt+B” and box-select
the region to be kept.

3.4 Advanced Modeling Example 1—Simulating Rough Surfaces Using
BlenderPhotonics

BlenderPhotonics’ ability to bridge Blender’s superior model creation/transformation capability
with state-of-the-art 3D mesh generation and quantitative photon simulation opens numerous
possibilities to advance our understanding of complex tissue-photon iterations in a realistic set-
ting, helping us design better instruments and experiments and accounting for scenarios that
simple models could never reveal. We can not enumerate all possible advanced modeling func-
tions provided by Blender; however, just to provide inspiration for biomedical optics researchers
and computational scientists, we hand-picked two features that are relevant to tissue optics.

Fig. 9 Intermediate steps of creating the Digimouse benchmark: (a) regional mesh after con-
verting the volume to mesh, (b) output tetrahedral mesh (cropped), (c) fluence-rate map rendering
over a trimmed mesh using face-deletion, and (d) that rendered over a sliced mesh using the
“bisect” function.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-16 August 2022 • Vol. 27(8)



In the first example, we use the rough-surface creation feature in Blender and investigate how
changing the roughness of a skin-mimicking surface could lead to different light distributions
and results. In the second example, we combine BlenderPhotonics with one of our most recent
advances in MC simulation—the implicit MMC (iMMC) algorithm26—to potentially enable
the study of the impact of human hairs in fNIRS measurements. To the best of our knowledge,
these types of studies have not been reported by other MC simulators.

In the rough-surface simulations, we adjusted the geometric parameters of the interface based
the aforementioned “SkinVessel” benchmark to simulate the roughness of realistic skin surface,
which was difficult to achieve in the past due to the lack of relevant features in the mesh gen-
eration tool. In this case, all parameters used in this benchmark are largely the same as we
described in the previous subsection, except that we change the source position from those for
“source-1” to those of “source-2” according to Table 2. We also shrink the domain by a factor
of 10 to amplify the effects by changing the length unit, defined as a custom property named
“unitinmm” attached to the source object, from 0.005 to 0.0005 mm. In addition, we modified
the plane-1 object (see Table 1) to create a rough surface. This is achieved by first selecting the
plane object in the edit mode, right-clicking on the object, choosing “Subdivide,” and setting the
division number to 39 [Fig. 10(a)]. In the next step, one switches to the vertex-selection mode,
selects the menu “Mesh/Transform/Randomize,” and then sets “Amount” to 1 and “Normal” to
1.0. This creates a maximum �1 × 0.0005 mm normal-direction-constrained random movement

Table 4 Optical parameters for each of the regions/labels of the “Digimouse” benchmark.48,49

Region ID Tissue type μa (1/mm) μs (1/mm) g n

1 Skin 0.0191 6.6 0.9 1.37

2 Skeleton 0.0136 8.6 0.9 1.37

3 Eye 0.0026 0.01 0.9 1.37

4 Medulla 0.0186 11.1 0.9 1.37

5 Cerebellum 0.0186 11.1 0.9 1.37

6 Olfactory bulbs 0.0186 11.1 0.9 1.37

7 External cerebrum 0.0186 11.1 0.9 1.37

8 Striatum 0.0186 11.1 0.9 1.37

9 Heart 0.024 8.9 0.9 1.37

10 Rest of the brain 0.0026 0.01 0.9 1.37

11 Masseter muscles 0.024 8.9 0.9 1.37

12 Lachrymal glands 0.024 8.9 0.9 1.37

13 Bladder 0.024 8.9 0.9 1.37

14 Testis 0.024 8.9 0.9 1.37

15 Stomach 0.024 8.9 0.9 1.37

16 Spleen 0.072 5.6 0.9 1.37

17 Pancreas 0.072 5.6 0.9 1.37

18 Liver 0.072 5.6 0.9 1.37

19 Kidneys 0.05 5.4 0.9 1.37

20 Adrenal glands 0.024 8.9 0.9 1.37

21 Lungs 0.076 10.9 0.9 1.37

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-17 August 2022 • Vol. 27(8)



[Fig. 10(b)]. According to the literature,50 the roughness of the human skin surface can be
described using the parameter Ra, defined as the arithmetic mean deviation of the depth profile

EQ-TARGET;temp:intralink-;e001;116;369Ra ¼
1

L

Z
L

0

jZðxÞjdx; (1)

where ZðxÞ is the deviation from the average depth at and L is the sampling length. In this case,
the Ra value of the surface is 0.25 μm [Fig. 10(b)] and 1.5 μm [Fig. 10(c)] in two separate
simulations. The optical parameters for each domain are given in Table 2. To test the effect
of light transmission across a rough-surface, the light source was set as a disc-like light source
with a radius of 25 μm, positioned off-center 30 deg tiled toward theþx-axis (i.e., “Source-2” in
Table 2). The results of the fluence distributions for Ra ¼ 1.5 μm are shown in Fig. 10(f).
In comparison, the light simulation for a low roughness skin at Ra ¼ 0.25 μm is shown in
Fig. 10(e).

The images shown in Figs. 10(e) and 10(f) demonstrate that considering tissue surface rough-
ness can noticeably alter the incident light direction. This is because a rough surface acts as a
diffuser and broadens the incident beam, significantly reducing the collimation of the
incident beam. The capability of BlenderPhotonics to simulate such a realistic surface model
can assist researchers in better optimizing their imaging system and obtaining more accurate
quantification.

3.5 Advanced Modeling Example 2—Simulating Realistic Human Hairs
Using Blender Hair System

In addition to the roughness of realistic human skin, hair is also widely considered an important
factor when performing optical measurements on the human body. In particular, the presence of
human hair is considered one of the most challenging aspects of fNIRS measurements.51

Unfortunately, due to the high complexity of modeling realistic hair, previous publications

Fig. 10 Comparisons between (b, e) low-roughness and (c, f) high-roughness surfaces using
BlenderPhotonics: (a) initial surface model after subdivision, (b, c) created rough surfaces using
randomized nodal offsets, (d) regional mesh, and (e, f) MMC simulated fluence rate cross-sec-
tional plots from a tilted disk source.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-18 August 2022 • Vol. 27(8)



on hair modeling were limited to simple models involving only dozens of hairs of uniform hair-
root distribution and tilting angle. Here, we combine the advanced hair modeling system in
Blender with the latest advances in the implicit MMC (iMMC) simulation algorithm and provide
a viable path for researchers to rigorously simulate the effects of hair in realistic measurements.
A comprehensive study characterizing the impact of hair of different densities, colors, lengths,
etc., in the context of fNIRS will be reported in a separate publication. Here, we just want to
demonstrate the rich and advanced hair model generation capability provided by Blender and
hopefully motivate readers to explore other complex shape modeling features provided by this
open-source platform.

In this example, we first show results from “growing” realistic hairs over a simple three-lay-
ered head model and then show hair models created using the aforementioned Colin27 atlas.
First, we create a three-layered slab model similar to the steps used in Sec. 3.1. The slab has
dimensions of 20 × 50 × 34.51 mm3, a 12.44-mm top layer simulating scalp/skull, a 2.07-mm
middle layer simulating CSF, and a 20-mm bottom layer simulating the brain (GM/WM). To
grow hairs on the top surface, we first select the top surface in the edit mode, right click and
select “Subdivision,” with the number of cuts set to 1. Then we select the face-center-vertex
inserted by the “Subdivision’’ step and open the “Object properties” panel on the right.
Under the “Vertex group,” add a new group, and click the “Assign” and “Select” buttons to
apply particle simulations over the selected surface later. Next, one switches to the “Particle
properties” panel, clicks on the plus sign to create a new particle property, and then selects
“Hair.” This setting immediately grows 1000 straight (along the normal direction) hairs with
random roots on the entire surface of the slab. To constrain the hairs to only the top surface,
go to the “Vertex group” subpanel, under the particle properties, and choose the vertex group
created earlier. Once a user switches to the object model, the hairs should be displayed similar
to Fig. 11(a). One can use the “Particle properties” panel to adjust various properties of the
hair model, such as total count, length, tilting angle, randomness of the tilting angle, etc.

Fig. 11 Demonstrations of different hair models created in Blender: (a) straight, (b) 45-deg tilted,
and (c) gravity-curved hairs grown over a three-layered slab head model and (d) straight and (e, f)
gravity-curved hairs simulated over the Colin27 atlas at two densities of (d and e) 165 hairs∕cm2

and (f) 825 hairs∕cm2.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-19 August 2022 • Vol. 27(8)



For example, setting the x∕y∕z velocity under the “Velocity” panel changes the direction of the
hairs and randomness of the tilting angle; setting hairs to tilt 45 deg in the þx-axis with a ran-
domness of 0.2 results in the hair model shown in Fig. 11(b). To create even more realistic hair
shapes, one can check the “Hair Dynamics” checkbox and click the “Play” button at the bottom
of the window. This applies forces to each segment of the hair shaft and creates curved hairs
pulled by gravity. Dynamically curved hairs using Fig. 11(b) as the initial model results in
Fig. 11(c). Similarly, this process can also be repeated in arbitrarily complex shapes, such
as the Colin27 atlas. In Figs. 11(d) and 11(e), we show the outcome of growing 80,000 hairs
(165 hairs∕cm2) with and without hair dynamics, respectively, on the Colin27 head surface; in
Fig. 11(f), we increase the hair count to 400,000 (825 hairs∕cm2) with hair dynamics enabled to
simulate extremely dense and realistic human hair. A special script is used to export all hair
vertices and the head mesh into a file that is processed by the Iso2Mesh toolbox to create
iMMC simulation models for subsequent light transport simulations.26

4 Conclusion

Despite the ample progress made toward developing open-source MC photon simulators, ease-
of-use is still greatly lacking among most publicly available MC packages. This creates barriers
to entry for less experienced users and hampers the widespread use of these state-of-the-art
simulation tools. The goal of this tutorial is to report on a software environment that utilizes
the open-source modeling tool, Blender, and combines interactive 3D mesh generation with
streamlined MC light simulation, thereby making it possible to create sophisticated and life-like
complex biophotonic simulations without needing to write a single line of code. With the
BlenderPhotonics add-on developed in this work, one can create simulation domains interac-
tively using the intuitive Blender interface while also taking advantage of the exquisite modeling
toolkit offered by the Blender ecosystem and the associated large user community. This work
greatly eases the utility of and expands the potential user community for MC simulation
packages.

Using three basic examples, we show users the step-by-step handling of various types of
inputs, including surface meshes, volumetric images, and Blender built-in objects, to conven-
iently create accurate and simulation-ready domain structures. Most of the examples only need a
minute or two to create and only require a few clicks in Blender/BlenderPhotonics; such sim-
ulations can be saved, shared, and reproduced by other users. In addition, we demonstrate a
significant expansion in our capability to create sophisticated and realistic simulations, enabled
by BlenderPhotonics. In one of the advanced examples, we show detailed steps to create rough
surfaces to simulate realistic human skin and demonstrate evidence that different roughness
levels impact how light interacts with the underlying tissue.

Additionally, we provided a showcase demonstrating how to use BlenderPhotonics to create
increasingly sophisticated human hair models. The hair/particle system is a well-developed fea-
ture in Blender’s toolbox for building photo-realistic 3D models. BlenderPhotonics makes the
hair-generation function readily available for advanced fNIRS modeling. To this end, we have
demonstrated the capability to control various hair features, such as length, density, root location,
tilting angles, as well as gravity-based bending.

In the next step, our focus is to further expand the BlenderPhotonics interface to incorporate
additional existing features provided in Iso2Mesh and MMC and make them accessible in an
intuitive and interactive fashion inside Blender. In addition to MC simulations, we will also
incorporate our Redbird16,52 FEM DE forward/inverse solver with BlenderPhotonics. Moreover,
we will continue developing the JMesh specification and enhance our current Blender-to-JSON
export and import capability. Our goal is to establish JSON/JMesh/JNIfTI as the “source-code”
format for scientific data, including mesh/shape and imaging-related data. Converging toward
a human-readable, universally supported, and easily extensible format is an important step
toward enhancing interoperability between increasingly complex data analysis pipelines and the
reproducibility of both experiments and simulations in scientific research.

To conclude, BlenderPhotonics is an open-source Blender add-on, capitalizing upon the large
and active Blender 3D modeling ecosystem, that is able to serve as an interactive front-end for
both 3D mesh generation and 3D mesh-based MC optical simulations. A simple yet functional

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-20 August 2022 • Vol. 27(8)



GUI design enables users without prior coding experience to create complex tissue models, tes-
sellate 3D tetrahedral meshes, and, when needed, run streamlined MC photon simulations with
ease. This software significantly shortens the learning curve for novice users of Iso2Mesh and
MMC, allowing them to focus on data analysis rather than preprocessing. BlenderPhotonics,
with its intuitive and feature-rich visual interface, is a great addition to the growing body of
open-source MC simulators and helps disseminate these research software tools to a broader
research community.

Disclosures

No conflicts of interest, financial or otherwise, are declared by the authors.

Acknowledgments

This research was supported by the National Institutes of Health (NIH) Grant Nos. R01-
GM114365, U24-NS124027, and R01-EB026998. The authors would like to thank Edward
Xu for his help in preparing this manuscript.

Code, Data, and Materials Availability

The latest BlenderPhotonics software can be downloaded at http://mcx.space/bp.

References

1. B. F. Kurland et al., “Promise and pitfalls of quantitative imaging in oncology clinical trials,”
Magn. Reson. Imaging 30(9), 1301–1312 (2012).

2. A. J. Buckler et al., “Quantitative imaging test approval and biomarker qualification: inter-
related but distinct activities,” Radiology 259(3), 875–884 (2011).

3. S. Semenov, “Microwave tomography: review of the progress towards clinical applications,”
Philos. Trans. R. Soc. A 367(1900), 3021–3042 (2009).

4. L. V. Wang and L. Gao, “Photoacoustic microscopy and computed tomography: from bench
to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).

5. N. Gajawelli et al., “Image postprocessing adoption trends in clinical medical imaging,”
J. Am. Coll. Radiol. 16(7), 945–951 (2019).

6. F. Pesapane, M. Codari, and F. Sardanelli, “Artificial intelligence in medical imaging: threat
or opportunity? Radiologists again at the forefront of innovation in medicine,” Eur. Radiol.
Exp. 2(1), 1–10 (2018).

7. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infra-
red spectroscopy (fNIRS) development and fields of application,” NeuroImage 63, 921–935
(2012).

8. T. J. Huppert, M. A. Franceschini, and D. A. Boas, Noninvasive Imaging of Cerebral
Activation with Diffuse Optical Tomography, CRC Press/Taylor & Francis, Boca Raton,
Florida (2009).

9. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen suffi-
ciency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).

10. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3d turbid media
accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

11. Q. Fang and D. R. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU
architectures,” Biomed. Opt. Express 3(12), 3223–3230 (2012).

12. C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,”
J. Biomed. Opt. 18(5), 050902 (2013).

13. A. D. Klose, “The forward and inverse problem in tissue optics based on the radiative trans-
fer equation: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 111(11), 1852–1853
(2010).

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-21 August 2022 • Vol. 27(8)

http://mcx.space/bp
http://mcx.space/bp
https://doi.org/10.1016/j.mri.2012.06.009
https://doi.org/10.1148/radiol.10100800
https://doi.org/10.1098/rsta.2009.0092
https://doi.org/10.1146/annurev-bioeng-071813-104553
https://doi.org/10.1016/j.jacr.2019.01.005
https://doi.org/10.1186/s41747-018-0061-6
https://doi.org/10.1186/s41747-018-0061-6
https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.1126/science.929199
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/BOE.3.003223
https://doi.org/10.1117/1.JBO.18.5.050902
https://doi.org/10.1016/j.jqsrt.2010.01.020


14. H. Dehghani et al., “Near infrared optical tomography using NIRFAST: algorithm for
numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732
(2009).

15. M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse model-
ing in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).

16. Q. Fang et al., “A multi-modality image reconstruction platform for diffuse optical tomog-
raphy,” in Biomed. Opt., BMD24, Optical Society of America (2008).

17. Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical appli-
cations,” J. Biomed. Opt. 21(9), 091312 (2016).

18. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference trans-
port and diffusion calculations for photon migration in homogeneous and heterogeneous
tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

19. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in
multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

20. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics
processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed.
Opt. 13(6), 060504 (2008).

21. L. Yu et al., “Scalable and massively parallel Monte Carlo photon transport simulations for
heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).

22. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,”
Biomed Opt Express 1(1), 165–175 (2010).

23. Q. Fang and S. Yan, “Graphics processing unit-accelerated mesh-based Monte Carlo photon
transport simulations,” J. Biomed. Opt. 24(11), 115002 (2019).

24. T. Young-Schultz et al., “FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated
Monte Carlo simulator for light propagation in turbid media,” Biomed. Opt. Express 10,
4711–4726 (2019).

25. R. Yao, X. Intes, and Q. Fang, “Generalized mesh-based Monte Carlo for wide-field
illumination and detection via mesh retessellation,” Biomed Opt Express 7(1), 171–184
(2016).

26. Y. Yuan, S. Yan, and Q. Fang, “Light transport modeling in highly complex tissues using
the implicit mesh-based Monte Carlo algorithm,” Biomed Opt Express 12(1), 147–161
(2021).

27. Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and gray-
scale images,” in IEEE Int. Symp. Biomed. Imaging: From Nano to Macro, IEEE, pp. 1142–
1145 (2009).

28. P. Alliez et al., “3D mesh generation,” in CGAL User and Reference Manual, CGAL
Contributors, Ed., 5.3.1 ed., CGAL Editorial Board (2021).

29. L. Rineau and M. Yvinec, “3D surface mesh generation,” in CGAL User and Reference
Manual, CGAL Contributors, Ed., 5.3.1 ed., CGAL Editorial Board (2021).

30. J.-D. Boissonnat and S. Oudot, “Provably good sampling and meshing of surfaces,”
Graphical Models 67, 405–451 (2005).

31. H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator,” AMC Trans. Math.
Software 41(2), 1–36 (2015).

32. Blender Online Community, “Blender—a 3d modelling and rendering package,” 2018,
http://www.blender.org.

33. G. T. Johnson et al., “ePMV embeds molecular modeling into professional animation soft-
ware environments,” Structure 19(3), 293–303 (2011).

34. M. F. Zini et al., “BioBlender: fast and efficient all atom morphing of proteins using blender
game engine” (2010).

35. C. Moraes and G. Santandrea, “Ortogonblender—documentazione ufficiale,” 2019, http://
www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf.

36. A. P. Tran, S. Yan, and Q. Fang, “Improving model-based functional near-infrared
spectroscopy analysis using mesh-based anatomical and light-transport models,”
Neurophotonics 7(1), 015008 (2020).

37. Q. Fang, “JData: a general-purpose data annotation and interchange format, Version 1,”
2020, https://github.com/NeuroJSON/jdata

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-22 August 2022 • Vol. 27(8)

https://doi.org/10.1002/cnm.1162
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1117/1.JBO.21.9.091312
https://doi.org/10.1088/0031-9155/43/5/017
https://doi.org/10.1016/0169-2607(95)01640-F
https://doi.org/10.1117/1.3041496
https://doi.org/10.1117/1.3041496
https://doi.org/10.1117/1.JBO.23.1.010504
https://doi.org/10.1364/BOE.1.000165
https://doi.org/10.1117/1.JBO.24.11.115002
https://doi.org/10.1364/BOE.10.004711
https://doi.org/10.1364/BOE.7.000171
https://doi.org/10.1364/BOE.411898
https://doi.org/10.1109/ISBI.2009.5193259
https://doi.org/10.1016/j.gmod.2005.01.004
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
http://www.blender.org
http://www.blender.org
http://www.blender.org
https://doi.org/10.1016/j.str.2010.12.023
http://www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf
http://www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf
http://www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf
http://www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf
http://www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf
http://www.ciceromoraes.com.br/ebook/pdf/OrtogOnBlenderDocIT.pdf
https://doi.org/10.1117/1.NPh.7.1.015008
https://github.com/NeuroJSON/jdata
https://github.com/NeuroJSON/jdata


38. Y. Zhang and Q. Fang, “BlenderPhotonics Github repository,” 2021, https://github.com/
COTILab/BlenderPhotonics.

39. R. Cox, “Official definition of the NIFTI1 header,” 2007, https://nifti.nimh.nih.gov/pub/dist/
src/niftilib/nifti1.h.

40. Q. Fang, “JNIfTI: an extensible file format for storage and interchange of neuroimaging
data, Version 1,” 2020, https://github.com/NeuroJSON/jnifti.

41. Q. Fang, “JMesh - A versatile data format for unstructured meshes and geometries, Version
1,” 2020, https://github.com/NeuroJSON/jmesh.

42. Kitware Inc., “The VTK user’s guide, 11th edition,” 2010, https://vtk.org/wp-content/
uploads/2021/08/VTKUsersGuide.pdf.

43. Q. Fang and S. Yan, “MCX Cloud—a modern, scalable, high-performance and in-browser
Monte Carlo simulation platform with cloud computing,” J. Biomed. Opt. 27(8), 083006
(2022).

44. P. Lindstrom and G. Turk, “Fast and memory efficient polygonal simplification,” in Proc.
Conf. Visualization, IEEE Computer Society Press, Washington, DC, pp. 279–286 (1998).

45. P. Du Val, Homographies, Quaternions, and Rotations, Vol. 4, Clarendon Press, Oxford
(1964).

46. S. Jacques, “mcxyz software,” https://omlc.org/software/mc/mcxyz/.
47. Q. Fang, “JNIfTI-formatted Digimouse atlas,” http://mcx.space/bp/data/digimouse.jnii

(accessed 8 April 2022).
48. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological

tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
49. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-

infrared spectroscopy concentration calculations for focal changes in oxygenation param-
eters,” Neuroimage 18(4), 865–879 (2003).

50. R. Ohtsuki, T. Sakamaki, and S. Tominaga, “Analysis of skin surface roughness by visual
assessment and surface measurement,” Opt. Rev. 20(2), 94–101 (2013).

51. M. A. Yücel et al., “Reducing motion artifacts for long-term clinical nirs monitoring using
collodion-fixed prism-based optical fibers,” NeuroImage 85, 192–201 (2014).

52. Q. Fang et al., “Combined optical imaging and mammography of the healthy breast: optical
contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1),
30–42 (2009).

Yuxuan Zhang is currently working toward his PhD in the Biomedical Engineering
Department, University of Connecticut, Storrs, Connecticut, United States. He received his
BE degree from Zhengzhou University, Zhengzhou, China, in 2019, and his MS degree in bio-
engineering from Northeastern University in 2021. His research interests include CRISPR-based
biosensors, neuroelectronic interfaces, and optogenetics, with a goal of developing advanced
neural probes for modulation and monitoring of the nervous systems.

Qianqian Fang, PhD, is currently an associate professor in the Bioengineering Department,
Northeastern University, Boston, Massachusetts, United States. He received his PhD from
Thayer School of Engineering, Dartmouth College, in 2005. He then joined Massachusetts
General Hospital and became an instructor of radiology in 2009 and an assistant professor
of radiology in 2012, before he joined Northeastern University in 2015. His research interests
include translational medical imaging devices, multimodal imaging, image reconstruction algo-
rithms, and high performance computing tools to facilitate the development of next-generation
imaging platforms.

Zhang and Fang: BlenderPhotonics: an integrated open-source software environment. . .

Journal of Biomedical Optics 083014-23 August 2022 • Vol. 27(8)

https://github.com/COTILab/BlenderPhotonics
https://github.com/COTILab/BlenderPhotonics
https://github.com/COTILab/BlenderPhotonics
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://github.com/NeuroJSON/jnifti
https://github.com/NeuroJSON/jnifti
https://github.com/NeuroJSON/jmesh
https://github.com/NeuroJSON/jmesh
https://vtk.org/wp-content/uploads/2021/08/VTKUsersGuide.pdf
https://vtk.org/wp-content/uploads/2021/08/VTKUsersGuide.pdf
https://vtk.org/wp-content/uploads/2021/08/VTKUsersGuide.pdf
https://vtk.org/wp-content/uploads/2021/08/VTKUsersGuide.pdf
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1109/VISUAL.1998.745314
https://doi.org/10.1109/VISUAL.1998.745314
https://omlc.org/software/mc/mcxyz/
https://omlc.org/software/mc/mcxyz/
http://mcx.space/bp/data/digimouse.jnii
http://mcx.space/bp/data/digimouse.jnii
http://mcx.space/bp/data/digimouse.jnii
https://doi.org/10.1109/3.64354
https://doi.org/10.1016/S1053-8119(03)00021-1
https://doi.org/10.1007/s10043-013-0014-5
https://doi.org/10.1016/j.neuroimage.2013.06.054
https://doi.org/10.1109/TMI.2008.925082

