
Modeling toolchain for realistic simulation
of photoacoustic data acquisition

Jan-Willem Muller,a,b,* Mustafa Ü. Arabul ,a Hans-Martin Schwab ,a

Marcel C. M. Rutten,c Marc R. H. M. van Sambeek ,a,b

Min Wu ,a and Richard G. P. Lopata a

aEindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven,
Department of Biomedical Engineering, Eindhoven, The Netherlands

bCatharina Hospital, Department of Vascular Surgery, Eindhoven, The Netherlands
cCardiovascular Biomechanics Group, Department of Biomedical Engineering,

Eindhoven, The Netherlands

Abstract

Significance: Physics-based simulations of photoacoustic (PA) signals are used to validate new
methods, to characterize PA setups and to generate training datasets for machine learning.
However, a thoroughly validated PA simulation toolchain that can simulate realistic images
is still lacking.

Aim: A quantitative toolchain was developed to model PA image acquisition in complex tissues,
by simulating both the optical fluence and the acoustic wave propagation.

Approach: Sampling techniques were developed to decrease artifacts in acoustic simulations.
The performance of the simulations was analyzed by measuring the point spread function (PSF)
and using a rotatable three-channel phantom, filled with cholesterol, a human carotid plaque
sample, and porcine blood. Ex vivo human plaque samples were simulated to validate the
methods in more complex tissues.

Results: The sampling techniques could enhance the quality of the simulated PA images effec-
tively. The resolution and intensity of the PSF in the turbid medium matched the experimental
data well. Overall, the appearance, signal-to-noise ratio and speckle of the images could be
simulated accurately.

Conclusions: A PA toolchain was developed and validated, and the results indicate a great
potential of PA simulations in more complex and heterogeneous media.
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1 Introduction

Photoacoustic (PA) imaging is a relatively new biomedical imaging modality that employs the
wide variety of optical properties found in tissue to generate contrast with ultrasound (US) res-
olution. Increasingly sophisticated PA setups and signal processing methods are being developed
to enhance the capabilities of PA imaging. Phantom experiments are often performed to validate
new methods, to characterize PA setups, and to generate training datasets for machine learning.
However, the scarcity of high-quality phantoms and the absence of a ground truth in in vitro
experiments impedes research. Numerical modeling approaches can provide an in silico research
environment, in which all relevant physical parameters are known and controllable. Therefore,
an accurate and validated PA imaging toolchain that can generate realistic PA images may
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accelerate the general development of PA imaging. However, generating realistic PA image data
with simulations remains a great challenge. In this research, we propose a thoroughly validated,
quantitative, and flexible PA imaging modeling toolchain and demonstrate its capability to sim-
ulate the acquisition of PA signals of a physical PA system in both phantoms and complex tissues.

The fundamental optical and acoustic processes underlying PA imaging are generally well-
understood, allowing for physics-based modeling of PA signal generation and acquisition. As
this kind of modeling is strictly governed by physical relations, it is inherently transparent and
enables full control over the simulated phenomena. Physics-based PA modeling techniques have
been used for a wide variety of purposes, e.g., to investigate model-based image reconstruction,
to optimize PA setups, and to analyze acoustic effects and artifacts, such as speed of sound
aberrations and clutter.1–5 Another emerging research area in which the simulation of data plays
a major role is the development of machine learning to improve or interpret measured PA data.
Machine learning has the potential to increase the quality of PA images by supressing clutter and
noise, to overcome limited-view and limited-bandwidth artefacts, and to provide quantitative
estimates of the tissue’s optical and acoustic properties.6 However, machine learning is a data-
driven approach, and a major bottleneck in its application is the lack of reliable experimental
training data and the ground truth. The use of accurate numerical models is therefore essential to
generate reliable training datasets in machine learning.7

In biomedical applications, the duration of the optical pulses used is typically short enough to
meet the thermal and stress confinement criteria needed for adequate optical energy delivery and
image resolution.8 When these criteria are met, the modeling of PA signals is generally subdi-
vided into an optical part and an acoustic part. First, the locally resolved pressure rise, caused by
the absorption of laser light and thermoelastic expansion of the tissue, is determined. To calculate
the initial pressure, the optical fluence, which is physically governed by the radiative transfer
equation (RTE), needs to be determined. Solving the RTE in light–tissue interaction is done
either with statistical Monte-Carlo (MC) methods or using a diffusion approximation of the
RTE, which can be solved with continuum methods (e.g., finite-difference and finite element
methods).9–11 Next, the propagation of the pressure waves must be simulated by solving the
acoustic wave equations. Many different mathematical techniques and software packages to
model wave propagation of medical US have been described in the literature, often
relying on spectral methods or the finite element method.12 For efficient and accurate PA wave
propagation modeling and reconstruction in heterogeneous media, the open source toolbox
k-Wave is frequently used in the literature.7,13,14

To be used as a reliable tool to generate realistic PA data, a PA imaging toolchain must be
flexible enough to adapt to various setups and media. Typical PA setups can consist of a range of
laser sources, e.g., fiber lasers,15 crystal lasers,16 and diode lasers,17,18 and different types of the
acoustic sensors, including single element transducers,19 linear array transducers,18 and custom-
designed transducers.20,21 Furthermore, the tissues on which PA imaging is performed, are often
heterogeneous and induce both optical and acoustic scattering, reflections, refraction, and/or
attenuation.

The coupling of the optical and acoustic domains, as well as a correct description of both the
PA setup and the medium to be imaged are nontrivial tasks. A thorough analysis of the quality of
the simulated PA data is needed to ensure realistic results. These analyses, however, are often
qualitative or rely on idealized setups and/or simplified media, such as wire phantoms.4,7,14,22–25

A thorough validation of the entire modeling chain with physical PA set-ups in complex media is
still missing. This lack of validation makes the accuracy and the realism of the simulations an
uncertainty and thus hinders the translation toward in vivo applications.

Therefore, in this study, a toolchain is developed and validated by comparing simulated PA
images with those acquired by an experimental PA imaging setup. To further improve the quality
of the simulated images, this study also investigates the performance of a sampling strategy for
the definition of the initial pressure field prescription in k-Wave. The toolchain is designed to be
quantitative, by simulating channel data in an absolute unit (Pascal) with a physical model.
Furthermore, it was made to be as flexible as possible with respect to the medium geometry
and PA system specifications. Both the optical and acoustic parts of the toolchain are validated,
and its capability to simulate realistic PA images is demonstrated using multiple in vitro phan-
toms and ex vivo human tissue samples of carotid plaques.26
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2 Methods

2.1 Optical Fluence Modeling

A grid-based MC software was developed to simulate the optical fluence distribution in complex
media. The tool is implemented in C++, callable from MATLAB (R2021a, The Mathworks,
Natick, Massachusetts) and compiled with multithreading support using OpenMP (GCC 8.1,
Free Software Foundation, Boston, Massachusetts). The implementation is based on the micro-
scopic Beer–Lambert law method, which shows an overall superior convergence rate compared
with other methods.27,28 In this method, photon packets with energy Ep are tracked that deposit
energy in the medium in a continuous way:

EQ-TARGET;temp:intralink-;e001;116;608Ed ¼ Ep · ð1 − e−μa·LaÞ; (1)

where Ed is the energy (J) deposited to a voxel in the medium, La is the distance (m) traveled by
the photon packet in that voxel, and μa is the optical absorption coefficient (m−1). Energy con-
servation is maintained by subtracting Ed from Ep after each deposition. The distance traveled
between two scattering events, Ls (m), is determined as follows:

EQ-TARGET;temp:intralink-;e002;116;526Ls ¼ −
logðηÞ
μs

; (2)

where μs denotes the scattering coefficient (m−1) and η is a random number generated from a
uniform probability distribution between 0 and 1. The direction of the photon packet is changed
in a scattering event according to the Henyey–Greenstein phase function:

EQ-TARGET;temp:intralink-;e003;116;445pðθÞ ¼ ð1 − g2Þ · sinðθÞ
2 · ð1þ g2 − 2 · g · cosðθÞÞ32 ; (3)

where g is the scattering anisotropy (–), θ is the angular deflection with respect to the photon
packet’s previous direction (rad), and pðθÞ is its corresponding probability function.

The optical properties for each grid point in the domain (μa, μs, g) can be set according to
the local simulated tissue compositions, allowing for a simulation of the photon distribution in
complex heterogeneous media.

2.2 Acoustic Simulation and Sensor Definition

The propagation of the initial pressure field in the tissue over time is simulated according to the
linear wave equation using the k-Wave toolbox. k-Wave is an open source toolbox that uses a
pseudospectral, time-domain, finite difference method to solve the linear wave equation for com-
pressional waves.13 The largest supported frequency in the simulation is limited by the Nyquist
criterion, which states that a sampling of at least two points per wavelength (PPWL) is needed.
The largest allowed spacing in the simulation is therefore related to the maximum frequency that
the US probe can detect. All waves with a higher frequency will not be sensed by the probe and
can thus be safely neglected in the simulation.

To define a sensor in k-Wave, each transducer element must be discretized to pixel positions
and associated weights. The position of an element is usually mapped to the grid using nearest-
neighbor interpolation.13 This approach, however, alters the size and position of the elements
and the kerf between them. Furthermore, it causes staircasing artifacts when the elements
are not aligned with the grid, negatively affecting the simulated channel data. These artifacts
can be reduced by band-limiting the shape of the elements first, using a numerical convolution
with the band-limited interpolant (BLI), which gives the correct quadrature weights for
discretization.29 In this study, an analytical description of the band-limited rectangular element
shape was used. The shape was prescribed directly in the spatial Fourier domain using a sinc
function, which gave the appropriate quadrature weights after applying the inverse Fourier
transform.
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2.3 Initial Pressure Definition

The Nyquist criterion needs to be considered when sampling p0 for use in k-Wave. If the maxi-
mum spatial frequency of the initial pressure is higher than the Nyquist frequency, aliasing
occurs when sampling this distribution. For initial pressure distributions of structures not aligned
with the grid, this effect may appear as staircasing artifacts (pixelated/discontinuous edges) in
the reconstructed image.

To avoid aliasing errors, an analytical description of the initial pressure in the spatial fre-
quency domain may be used. The initial pressure field can subsequently be sampled in the fre-
quency domain, which prevents the occurrence of aliasing. This approach, however, is limited to
spatial pressure distributions for which analytical descriptions exist.

A more generic and straightforward method would be to use a finer spatial sampling of p0

and adjust the acoustic simulation grid accordingly. This method will be referred to as the direct
simulation method. Although a direct simulation will converge to the correct solution for
decreasing Δxsim, it is not viable for most purposes, as it increases computation time signifi-
cantly, especially for two-dimensional (2D) and three-dimensional (3D) simulations.

Wise et al.29 introduced a technique in which the band-limited pressure field is obtained by
a numerical integration of point sources, using the BLI. Although this method is theoretically
valid for all geometrical shapes, finding the optimal spatial distribution of point sources for
arbitrary shapes is a nontrivial task. Furthermore, the BLI has an infinite support, which makes
this method computationally demanding. To reduce computation time, truncation of the BLI
was suggested at the expense of accuracy.

In this study, we propose a computationally inexpensive and accurate preprocessing step to
reduce aliasing artifacts, see Fig. 1. The initial pressure (in Pa) is calculated according to

EQ-TARGET;temp:intralink-;e004;116;453p0 ¼ Γ · μa · Φ; (4)

where Γ denotes the Grüneisen parameter [–], μa is the optical absorption coefficient (m−1) and
Φ is the optical fluence (J∕m2) as determined by the optical MC simulation. Unlike the relatively
large spatial spacing used for the acoustic simulation, Δxsim, a smaller spacing spatial spacing
Δxpre (Δxpre < Δxsim) is used to sample p0. This smallerΔxpre allows for a better sampling of p0,
as less content in the spatial frequency domain is aliased.

Fig. 1 A schematic example of the proposed p0 sampling strategy of a rectangular absorber.
After determining the optical fluence, p0 is calculated using a fine grid spacing. A filtering and
resampling step is performed subsequently to sample p0sim on the coarse grid used in the acoustic
simulation.
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To create speckle in the PA images, a Gaussian distribution was used to model deviations in
the absorption coefficient and Grüneisen parameter. In this model, random fluctuations were
added to the initial pressure:

EQ-TARGET;temp:intralink-;e005;116;699p0speckle
¼ p0 þ NðσspeckleÞ · Φ; (5)

EQ-TARGET;temp:intralink-;e006;116;655σspeckle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ispeckle

p
· ðΔxpreÞ−D

2 ; (6)

where NðσÞ denotes a zero mean normal distribution with standard deviation σ, Ispeckle is a spa-
tially distributed quantity proportional to the local acoustic speckle intensity, and D is the num-
ber of simulated dimensions (D ¼ 1; 2; 3, corresponding to 1D, 2D, and 3D simulations) in the
acoustic simulation. The correction factor ðΔxpreÞ−ðD∕2Þ ensures the simulated speckle intensity
is independent of the used sampling spacing, see Appendix A.

Next, p0speckle
is filtered with a multidimensional ideal low-pass filterH to remove frequencies

higher than the maximal frequency supported in the simulation:

EQ-TARGET;temp:intralink-;e007;116;553rectðξÞ ¼
�
1 for jξj ≤ 1

2

0 for jξj > 1
2

; (7)

EQ-TARGET;temp:intralink-;e008;116;493Hð~kÞ ¼
YD
i¼1

rectðki · ΔxsimÞ; (8)

EQ-TARGET;temp:intralink-;e009;116;452p�
0speckle

¼ F−1fFðp0speckle
Þ · Hð~kÞg; (9)

whereF denotes the multidimensional spatial Fourier transform and ~k spatial frequency. Finally,
the filtered distribution p�

0speckle
is downsampled to obtain p0sim, which was prescribed as input in

k-Wave. A schematic overview of all processing steps in the toolchain, is shown in Fig. 2.

2.4 Staircasing Error Reduction Analysis

To estimate the performance of the method proposed, both the required computation time and the
error in the delay-and-sum reconstructed PA images of disc-shaped p0 distributions, with a
radius of 1 and 5 mm, were determined. The simulations were performed on a PC with an
i7-10700 processor (Intel, Santa Clara, California) and an RTX 3070 GPU (Nvidia, Santa
Clara, California), using the optimized CUDA k-Wave code. The p0sim distributions were
obtained using three sampling strategies: (1) the preprocessing method proposed with a fixed
Δxsim and a varying Δxpre, (2) by means of the Wise et al. method29 with a fixed Δxsim and a
varying number of integration points Nint, and (3) using a direct simulation with varying Δxsim.
The kWaveArray class (alpha version 0.3) was used as implementation of the Wise et al. method,
and the default truncation of the BLI at 5% was applied. In this implementation, the disc is
sampled in a radial pattern, with the number of integration points increasing linearly as a function
of the radial position to enhance uniformity. For comparison, Nint was expressed as a function of
the effective sampling distance Δxeff using the following equation:

Fig. 2 A schematic overview of all processing steps. The gray boxes indicate enhanced process-
ing methods proposed in this study.
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EQ-TARGET;temp:intralink-;e010;116;735Nint ¼
Aobj

ðΔxeffÞ2
; (10)

where Aobj denotes the area (m2) of the simulated object.
The simulation results were compared with an analytical solution of a low-pass filtered disc

phantom that exhibits no staircasing. This reference PA phantom was obtained by means of a
simulation in which p0sim was sampled in the spatial frequency domain:

EQ-TARGET;temp:intralink-;e011;116;650p0sim
¼ F−1

0
B@J1ð2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2x þ ξ2y

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2x þ ξ2y

q
1
CA; (11)

where ξx and ξy denote the spatial frequency (scaled with respect to the radius) in x and y direc-
tions, respectively, and J1 is the order-1 Bessel function of the first kind.

The error ε, with respect to the reference simulation, was calculated using

EQ-TARGET;temp:intralink-;e012;116;551ε ¼ 10 · log10

Pðp − prefÞ2P
p2
ref

; (12)

where p and pref denote the pressures of the reconstructed radio frequency signals, respectively.

2.5 In Vitro and In Silico Experimental Setup

The developed toolchain was validated with a real experimental setup. The setup consisted of a
tunable pulsed laser (Opotek, Radiant HE 355LD, Carlsbad, California) with a pulse duration of
6 ns and a fiber bundle with a custom designed circular output aperture of 4.9 mm in diameter
(CeramOptec, Bonn, Germany). AVantage 256 system (Verasonics, Kirkland, Washington) con-
nected to a Verasonics L11-5v linear array transducer with 128 elements, a pitch of 300 μm, and
an elevational focus depth of 18 mm, was used as US detector. The probe’s center frequency was
7.6 MHz, and it had a bandwidth of 75%. The frequency response of the probe was implemented
in the toolchain using a linear frequency filter, defined as a Hann window in the temporal Fourier
domain. The center frequency and bandwidth of the Hann filter (at −6 dB) in the simulations
were chosen to match the probe used. The pixel spacing used in k-Wave, Δxsim, was set to
30 μm, unless stated otherwise. The fiber bundle and probe were aligned and mounted to a linear
stage using a custom-designed probe holder, see Figs. 3(a) and 3(b).30 In the optical simulations,
the fiber bundle tip was approximated as a disc source with uniform intensity. The angular dis-
tribution of the emitted photons was uniform within a cone with a maximum angle with respect
to the bundle’s surface of 5 deg, see Figs. 3(c) and 3(d). All optical simulations were performed
in 3D with a grid spacing of 250 μm. The medium properties were constant in the elevational
direction. The acoustic simulations, however, were performed in 2D in the imaging plane of the
linear probe. Acoustic attenuation was not considered, as the acoustic attenuation is relatively
insignificant compared with the effective optical attenuation for all experiments.

2.6 Verification of Simulated PSF in Turbid Media

The ability of the toolchain to accurately simulate the point spread function (PSF) in turbid
media was verified experimentally. A black thread (280 μm diameter) served as an absorber
and was positioned in a tank filled with deionized water. The angle between the normal direction
of the probe and the laser source (800 nm) was 40 deg. The position of the probe and the laser
source could be adjusted simultaneously using a linear stage connected to the probe holder, to
vary the distance to the black thread in steps of 0.5 mm, see Fig. 3. The reconstructed pressure at
the thread’s position in the PA images was determined for each position and were compared
between the in vitro and simulated results.

Intralipid (Intralipid 20%, Fresenius Kabi Nederland, Huis Ter Heide, The Netherlands) was
added to the water to increase the scattering coefficient. The 20% intralipid was diluted to sol-
utions with a range of five concentrations (0.01%, 0.02%, 0.05%, 0.1%, and 2%). This range of
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concentrations corresponds to reduced scattering coefficients between 0.1 and 2 cm−1.31 As the
absorption of intralipid at 800 nm wavelength is negligible, only absorption due to the water
(μa ¼ 2.3 m−1) was taken into account in the simulations.31,32 The scattering anisotropy factor
was set to 0.55, in agreement with estimations of the anisotropy factor of intralipid using Mie
theory31.

2.7 Three-Channel Phantom

To assess the performance of the acoustic simulation in reproducing the visual appearance of
realistic tissues, a controlled in vitro study was conducted using a polyvinyl alcohol (PVA) phan-
tom with three channels representing plaque in a carotid artery, see Figs. 4(a)–4(d).33 The three
channels were filled with: (1) cholesteryl linoleate (Sigma-Aldrich, St. Louis, Missouri),
(2) pieces of a human plaque, and (3) porcine blood collected from the slaughterhouse with
19% w/v sodium citrate tribasic dihydrate (Sigma-Aldrich, St. Louis, Missouri) as anticoagulant.
The human plaque samples in this study were obtained during a carotid endarterectomy as part of
an in vivo PA imaging study previously reported by our group.26 The phantom was fixed in a
rotatable set-up that allowed for tomographic compounding to increase PAI quality and field of
view.33 An optical wavelength of 710 nm was chosen to illuminate the phantom, as this resulted
in relatively high-quality images with uniform absorption within each channel. The phantom was
rotated over 180 degrees in steps of 18 degrees, to apply an even illumination. A uniform fluence
distribution was used in the acoustic simulations. Gaussian noise was added to the simulated

Fig. 3 (a) A schematic drawing of the setup used. The fiber bundle and probe are attached to a
linear stage using the probe holder. The mounted sample can be rotated by a motor. (b) A photo-
graph of the probe holder. (c) A simulation of the normalized fluence (m−2) in water. The probe’s
imaging plane is indicated by the dashed line. (d) The optical fluence in the probe’s imaging plane,
corresponding to the green dashed line in (c).
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channel data to match the noise level of the in vitro measurements and the Grüneisen parameter
was spatially homogeneous and fixed for all simulations. An identical band-pass filter (3 to
13 MHz) was applied to both the simulated and the in vitro channel data to remove noise and
artifacts beyond the bandwidth of the transducer. Afterward, the channel data were delay-and-
sum beamformed to create an image for each rotation angle. The resulting images were spatially
compounded, either coherently (averaging of radio frequency data) or incoherently (averaging
after envelope detection).34 To mimic registration errors in the in vitro set-up, the simulated PA
images were translated randomly in both axial and lateral direction, using an empirically deter-
mined Gaussian distribution with a standard deviation of 200 μm before spatial compounding.

2.8 Ex Vivo Plaque Imaging

The developed toolchain was used to simulate ex vivo PA images of two human plaque samples
to evaluate the performance in a more complex and heterogeneous tissue. The plaques were
scanned using an optical wavelength of 800 nm. Manual segmentations of the plaque were made
using US B-mode data and histology. Different tissue types were assigned to each region in the
plaque, see Figs. 4(e)–4(h). The optical and acoustic properties in the simulation were assigned
per region, see Table 1. Note that the tissue types and corresponding material properties for each

Fig. 4 The properties of the three-channel phantom used in the toolchain validation. (a) The three
channels are filled with cholesterol, a human plaque sample, and blood, respectively. (b) The initial
pressure field, (c) the speed of sound map, and (d) the density map as prescribed in the acoustic
simulation. (e) and (f) Two in vitro US images of human plaque samples. The corresponding
segmentations used in the simulations are shown in (g) and (h).

Table 1 The optical (at 800 nm wavelength) and acoustic parameters used in each segmented
region of the two plaques. The reference value for Ispeckle at 0 dB is 8.9 · 10−6.

Tissue type

Speed
of sound
(m/s)

Density
(kg∕m3)

Ispeckle
(dB)

Optical
absorption
(1/cm)

Optical reduced
scattering
(1/cm)

Anisotropy
factor
g (∼)

Lumen/water (1) 1480 1000 −∞ 0.02332 032 —

Fibrous tissue (2) 1540 1050 −10 0.835 12.636 0.9336

Necrotic core (3) 1540 1000 −10 0.835 13.436 0.9336

Hemorrhage (4) 1540 1000 −5 1.635 12.636 0.9336

Fibrous tissue (5) 1540 1050 0 0.835 12.636 0.9336

Calcification (6) 1580 1100 0 1.135 16.436 0.9336
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region were tuned to match the ex vivo PA images and may not reflect the ground truth exactly.
The. Ispeckle and the noise level were tuned empirically to be in agreement with the observed
speckle intensity and noise in the ex vivo images and the Grüneisen parameter was spatially
homogeneous and fixed for both simulations. An identical band-pass filter (3 to 13 MHz) was
applied to both the simulated and the in vitro channel data.

3 Results

3.1 Initial Pressure Preprocessing

A simulation of the 5 mm radius disc with the default spatial sampling width Δxsim of 30 μm
(6.6 PPWL at the probe’s center frequency) leads to significant aliasing artefacts in the recon-
structed image, see Fig. 5(a). Although the top and bottom signals are reconstructed correctly,
staircasing artifacts arise in the regions between 1 and 5 o’clock, and between 7 and 11 o’clock.
Furthermore, the side lobes and grating lobes of these staircased signals cause an erroneously
elevated background signal in a large part of the image. By increasing the PPWL to 40, which
results in a p0 spatial sampling width of 4.9 μm, the errors could be reduced significantly,
at the cost of a strong increase in memory occupation and computation time. The computation
time increased from ∼14 s to 36 min between the simulations performed with 6.6 PPWL and
40 PPWL using the direct method. The method by Wise et al.29 increased the computation
time from 22 s to 4.7 min and showed an erroneously elevated signal within the disc, but
no staircasing artifacts at the disc’s boundary. The PA image simulated using the preprocessing
method is almost identical to the one simulated with the direct method. Hence, the preprocessing
step is effectively reducing aliasing errors. The additional computation time needed for the
preprocessing step was 3 s, yielding a total simulation time of 17 s.

The effectiveness of both the direct method and the preprocessing method was quantified by
calculating the error of the PA images, ε, with respect to the results from the reference simulation,
see Fig. 6. The reduction of the error is similar between the direct simulation and the prepro-
cessing method, for an equal number of PPWL. For these methods, ε is independent of the size of
the disc-shaped p0 distribution and the center frequency of the probe and shows algebraic con-
vergence with increasing PPWL. For the method proposed by Wise et al.,29 the results show a
similar trend, although the intensity error is less similar between different disc sizes and center
frequencies, see Fig. 6(c). The simulations using the preprocessing method proposed were gen-
erally faster than those using the Wise et al. method, up to 47 times for the large disc at 7.6 MHz
center frequency with 80 PPWL, see Fig. 6(d). An equation was fitted empirically to determine
the mean error of the reconstructed image as function of the number of PPWL for the prepro-
cessing method proposed:

EQ-TARGET;temp:intralink-;e013;116;284ε ≈ −13.3 · lnðPPWLÞ þ 9.09: (13)

Fig. 5 The reconstructed PA images of the 5-mm radius disc are shown (60 dB dynamic range) for
different sampling strategies of p0: (a) p0 was sampled directly on the k-Wave grid with 30 μm
spacing (6.6 PPWL); (b) p0 was directly sampled on a finer k-Wave simulation grid with 40 PPWL;
(c) p0 was sampled using the preprocessing method proposed with 40 PPWL; (d) p0 was sampled
using the Wise et al. method with 40 PPWL. The reference PA image is shown in (e), in which p0

was sampled in the spatial Fourier domain.
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3.2 Fluence Simulation in Turbid Medium

The PSF of the black thread was measured in vitro and compared with the simulated result,
see Figs. 7(c) and 7(d). Overall, the appearances of the in vitro and simulated PSF are similar.
The axial resolution of the in vitro PSF, 310 μm (−6 dB peak width) was slightly worse than the
simulated resolution of 270 μm. The in vitro and simulated positions of the grating lobes are
almost identical, and the lobes’ amplitudes are comparable in general. The amplitude of the
reconstructed pressure was measured for a range of intralipid concentrations in vitro, see
Figs. 7(a) and 7(b). By increasing the intralipid concentration, the reduced scattering coefficient

Fig. 6 (a) Intensity error ε is shown as a function of the pixel spacing of the acoustic simulation
using the direct simulation method. (b) ε is shown as function of Δxpre in the method proposed,29

with a constant acoustic simulation pixel spacing of 30 μm. (c) ε is shown as a function of Δxeff in
the method by Wise et al., with a constant acoustic simulation pixel spacing of 30 μm. The solid
red lines show the fit as described by Eq. (13). (d) The computation time ratio needed for the com-
bined p0 sampling and k-Wave simulation between the method by Wise et al.29 and the method
proposed.

Fig. 7 (a) The maximum reconstructed pressure of the black thread phantom is shown for water
and two different concentrations of intralipid. (b) The maximum pressures and corresponding
depths of the PSF are shown for water and all concentrations of intralipid. The dashed line shows
the results for additionally simulated concentrations of intralipid. (c) The simulated PSF in water.
(d) The in vitro PSF in water. A dynamic range of 60 dB was used for visualization.
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is increased as well, leading to a smaller peak amplitude and a shift of the peak location toward
smaller depths. The change in the peak’s amplitude and depth as function of intralipid concen-
tration in the simulated data corresponded well to the experimental results over a relatively large
range of pressure amplitudes (30 dB).

3.3 Three-Channel Phantom

The in vitro and simulated PA images of the three-channel phantom were obtained by spatial
compounding of the acquisitions over all rotation angels, see Figs. 8(a)–8(d). The in vitro and
simulated PA images appear to be similar in terms of overall contrast and resolution of the PVA
phantom and its three channels for both compounding techniques. The signal-to-noise ratio
(SNR) was determined for all channels and compounding techniques, see Figs. 8(e) and
8(f). Overall, the SNR of the coherent compounded simulated images in which no registration
errors were added was more than 5 dB larger than the in vitro data. The increased SNR was
observed in the incoherent simulated images too, although less pronounced. By including
registration errors in the simulated data, the mean SNR of all channels was decreased by
4.4� 0.39 dB for coherent compounding, and by 0.77� 0.10 dB, compared with simulated
data with perfect registration. After adding registration errors, the SNR of simulated data agreed
well with the in vitro data for all channels and for both compounding techniques. The mean
SNR decrease for coherent compounding was 3.6 dB larger than the decrease for incoherent
compounding. This observation can be explained by the fact that coherent averaging is more
susceptible to registration errors than incoherent compounding, as the latter does not take phase
information into account.

3.4 Ex Vivo Plaque Imaging

Two human carotid plaques were scanned ex vivo at a wavelength of 800 nm, see Figs. 9(a) and
9(b). The top parts of the plaques show relatively strong speckle signals. The intensity of these
signals drops rapidly over only several millimetres deeper into the plaque, implying a strong
fluence decrease with increasing depth. Furthermore, two PA interface signals originating
from sharp transitions in the local absorption coefficient can be observed in the first plaque,
see Fig. 9(a). These signals, indicated by the green arrows, appear only as lines due to the
band-limitation of the probe.26 Overall, the simulated PA images agree well with the ex vivo

Fig. 8 (a), (b) The simulated PA images for incoherent and coherent spatial compounding.
(c), (d) The in vitro PA images for incoherent and coherent spatial compounding. All images are
shown with a dynamic range of 30 dB. The SNR (n ¼ 10 for simulated data, error bars denote
standard deviation) for each channel is shown in (e) for the coherently compounded images,
and in (f) for the incoherently compounded images. The SNR of the simulated data was calculated
both with an imperfect registration (I.R.) and with a perfect registration (P.R.).
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images in terms of overall appearance, resolution, and contrast, see Figs. 9(c) and 9(d).
Furthermore, both the rapid fluence drop as function of depth, and the two PA interface signals
could be simulated realistically. However, the top region of the plaque in Fig. 9(b) shows several
high-intensity absorbers that were not present in the used segmentation. The Gaussian model for
speckle could not simulate these high-intensity absorbers.

4 Discussion

Many numerical methods to simulate the acoustic wave propagation and the optical absorption in
tissue have been described and verified before, using both analytical solutions and in vitro
experiments.11,12,37,38 However, a thorough validation of the entire modeling chain with physical
PA setups in complex media is still missing. This lack of validation makes the accuracy and the
realism of the simulations an uncertainty and thus hinders the translation toward in vivo appli-
cations. In this study, a modeling toolchain has been developed and thoroughly validated to
simulate the acquisition of PA signals from complex media with a physical PA imaging system.
The toolchain is based on two separate modeling steps: simulating the initial pressure field first
and subsequently simulating the acoustic propagation of the generated PAwaves. Furthermore,
a new sampling strategy for the initial pressure was proposed to reduce discretization artifacts in
the reconstructed images. The toolchain developed allows for quantitative simulations of PA
signals, with a proper scaling factor for speckle intensities. The toolchain was designed to be
as generic as possible, such that many different types of PA systems and media can be simulated.

The optical fluence was calculated by means of an MC method, which enables the simulation
of the light distribution in complex media according to the RTE. A grid-based approach was
taken to simulate the optical fluence, as this allowed for efficient raytracing of the photon
packets and a convenient interpolation to the grid-based acoustic wave field solver of k-Wave.
The developed MC software employs the microscopic Beer–Lambert law method for faster con-
vergence and is parallelized for improved performance compared with traditional MC codes.28,39

Although more sophisticated methods have been described in the literature that make use of
graphical processing units to increase computational performance,40 the developed software

Fig. 9 (a), (b) Two ex vivo PA images (at 800 nm) of different human plaques (P1, P2). (c), (d) The
corresponding simulations. Two PA signals originating from the interface between two absorbing
layers can be observed in (a) and (c) and are indicated by the arrows. The dynamic range of
all images is 35 dB.
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was mainly aimed to offer a practical and user-friendly modeling platform. A drawback of the
used grid-based method, however, is a less accurate simulation of refraction and reflection
effects, compared to mesh-based methods.41–43 The effect of refraction and reflection was
deemed relatively small compared with scattering and absorption effects in most biological
tissues.

The acoustic wave modeling software k-Wave was used in the toolchain to simulate the
propagation of PAwaves. k-Wave solves the wave equations governing the behavior of PA signal
propagation through media and is therefore able to model all relevant acoustic phenomena, i.e.,
second and higher order scattering, frequency-dependent attenuation, reflection, and refraction.
Due to the grid-based nature of k-Wave, staircasing occurs when discretizing the initial pressure
field. Staircasing is a fundamental issue in grid-based discretization and has been studied in other
physical domains as well, for example, in electromagnetics.44 The effect of staircasing in band-
limited pressure fields in PAwas investigated in this study. The numerical method to prescribe p0

in k-Wave was optimized to suppress staircasing errors in the simulated PA data. The prepro-
cessing proposed step can achieve a similar performance as the direct simulation method (finer
simulation grid) and the method introduced by Wise et al. (integration of point absorbers) in
reducing the reconstructed intensity error, by decreasing the spatial spacing only when calcu-
lating p0 and leaving k-Wave’s grid spacing intact. The staircasing artifacts at the disc’s boundary
were absent in the Wise et al. method. Therefore, the Wise et al. method preserves the geomet-
rical shape of the absorbers better, even at smaller sampling spacings. Still, it suffered from other
artifacts in the region within the disc. These artifacts are probably caused by the BLI thresh-
olding at 5% and by a slight nonuniform distribution of the integration points within the disc.
Both the Wise et al. method and the direct simulation method led to a significant increase in
computation time, as they were 1̃7 and 125 times slower than the preprocessing method, respec-
tively, when simulating a 5-mm radius disc at a p0 sampling of 40 PPWL. Note that the acoustic
simulations were performed in 2D and that the required simulation time for the methods can
differ in 3D. The preprocessing step therefore effectively improves the dynamic range of the
PA images that can be simulated accurately. Furthermore, the preprocessing step is performed
independent of the actual optical and acoustic simulations, allowing it to be used effectively with
other methods and software tools than used in this study. To ensure a convenient workflow for
the user, the optimal grid spacing in the preprocessing method can be straightforwardly deter-
mined using an empirical fit [Eq. (13)], after specifying the required dynamic range in the simu-
lated PA images.

To validate the toolchain, simulated images of two phantoms and an ex vivo carotid plaque
were compared with reconstructed images from a real PA set-up. The validation was performed
on PA images, as this is a convenient and natural way to process and analyze the data. However,
as the toolchain provides the raw channel data, the processing of the data is not limited to im-
aging only. Although all simulation results agree well with the real PA measurements in general,
some small deviations are still present. The axial resolution of the simulated PSF was close to the
in vitromeasured resolution with only an absolute error of 40 μm (0.2 wavelengths) as measured
by the FWHM of the wire signal. The underestimation of FWHM of the wire in the simulation
may be caused by the relatively large diameter of the wire (280 μm) which is larger than the
wavelength at the probe’s center frequency (200 μm). Still, the simulated grating lobes agreed
well with the experimental data in terms of reconstructed intensity and position. In this study, the
system’s frequency response filter was defined by means of the probe’s center frequency and
bandwidth using a Hann window in the temporal frequency domain. Although this approach is
relatively straightforward and accurate for the in vitro system used, the PSF could be further
improved by measuring the impulse response using a point absorber much smaller than the
acoustic wavelength or directly using a calibrated hydrophone.

The simulated pressure amplitude and depth of maximum PA signal intensity in the recon-
structed images matched well with the in vitro data for all concentrations of intralipid. The simu-
lated pressure profiles as function of depth were accurate, although the pressure amplitude was
generally underestimated in regions next to the peak. As this error is also present in the case of
0% intralipid, the error is probably caused by an inaccurate simulation of the light source.
Furthermore, optical reflections in the in vitro set-up may also contribute to the discrepancy
between the simulated and in vitro profiles. Moreover, it should be noted that, in the simulations,
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the Henyey–Greenstein phase function was used to calculate the optical scattering angle distri-
bution, as is often done in tissue optics, whereas the scattering in intralipid is dominated by Mie
scattering. These different phase functions may change the appearance of the pressure profiles
slightly, even for equal reduced scattering coefficients and scattering anisotropy factors. Still the
results suggest that simulations can replicate the actual optical wave propagation with high
accuracy.

The PA speckle present in the ex vivo images was simulated using a Gaussian model to
add random fluctuations to the initial pressure field. The appearance of PA speckle patterns in
the simulated images, however, is highly dependent on the segmentation and prescription of
the initial pressure. Although the Gaussian model gives reasonable results, other distributions
or techniques to define the initial pressure may be investigated to increase the realism of the
simulated PA signals in tissue models.

5 Conclusion

In this study, a flexible toolchain to simulate PA signals has been developed and validated. MC
software was developed to determine the optical fluence in the illuminated medium and the open-
source k-Wave toolbox was used to simulate the acoustic propagation of the pressure field over
time. A computationally efficient preprocessing step was developed to decrease aliasing errors in
the prescribed initial pressure field, which cause incorrect signals in the reconstructed PA
images. It was shown that this preprocessing step could achieve a similar reduction in aliasing
errors compared to the traditional approach of decreasing the spatial step in the k-Wave sim-
ulation. The toolchain was validated by in vitro measurements of a black wire, a three-channel
phantom and ex vivo images of two human carotid plaques. It was shown that the PSF could be
simulated accurately in turbid media. The overall appearance and SNR of the simulated PA
images of the three-channel phantom and the two plaques showed good agreement to real
PA measurements, indicating the great potential of the PA simulation in a more complex and
heterogeneous media using the proposed toolchain.

6 Appendix

The energy of a 1D signal can be expressed using the following equation:

EQ-TARGET;temp:intralink-;e014;116;348E ¼
XN−1

n¼0

sðnÞ2 Δx; (14)

where sðnÞ is the signal at position n, and Δx is the spatial pixel spacing.
For a zero mean noise signal, the expected energy can also be written as function of the

variance of s:

EQ-TARGET;temp:intralink-;e015;116;266E ¼ N · VarðsÞ · Δx: (15)

To simulate a constant speckle intensity for all possible Δx, the energy per unit length must be
constant. Furthermore, because the total power of white noise scales proportionally with the
bandwidth, the energy per unit of frequency should also be constant. Ispeckle can be related
to E by applying a proper scaling:

EQ-TARGET;temp:intralink-;e016;116;188Ispeckle ¼
E

L · fs
¼ E

ðΔx · NÞ · 1
Δx

¼ E
N

¼ VarðsÞ · Δx; (16)

where L is the total length of the signal and fs is the spatial sampling frequency. Finally, Ispeckle
can be related to the standard deviation of s, σs:

EQ-TARGET;temp:intralink-;e017;116;118σs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðsÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ispeckle
Δx

r
: (17)

The derivation can be generalized for multiple dimensions to obtain Eq. (6).
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