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Abstract

Significance: Machine learning (ML) models based on deep convolutional neural networks have
been used to significantly increase microscopy resolution, speed [signal-to-noise ratio (SNR)],
and data interpretation. The bottleneck in developing effective ML systems is often the need to
acquire large datasets to train the neural network. We demonstrate how adding a “dense encoder-
decoder” (DenseED) block can be used to effectively train a neural network that produces super-
resolution (SR) images from conventional microscopy diffraction-limited (DL) images trained
using a small dataset [15 fields of view (FOVs)].

Aim: The ML helps to retrieve SR information from a DL image when trained with a massive
training dataset. The aim of this work is to demonstrate a neural network that estimates SR
images from DL images using modifications that enable training with a small dataset.

Approach: We employ “DenseED” blocks in existing SR ML network architectures. DenseED
blocks use a dense layer that concatenates features from the previous convolutional layer to
the next convolutional layer. DenseED blocks in fully convolutional networks (FCNs) estimate
the SR images when trained with a small training dataset (15 FOVs) of human cells from the
Widefield2SIM dataset and in fluorescent-labeled fixed bovine pulmonary artery endothelial
cells samples.

Results: Conventional ML models without DenseED blocks trained on small datasets fail to
accurately estimate SR images while models including the DenseED blocks can. The average
peak SNR (PSNR) and resolution improvements achieved by networks containing DenseED
blocks are ≈3.2 dB and 2×, respectively. We evaluated various configurations of target image
generation methods (e.g., experimentally captured a target and computationally generated target)
that are used to train FCNs with and without DenseED blocks and showed that including
DenseED blocks in simple FCNs outperforms compared to simple FCNs without DenseED
blocks.

Conclusions: DenseED blocks in neural networks show accurate extraction of SR images even
if the ML model is trained with a small training dataset of 15 FOVs. This approach shows that
microscopy applications can use DenseED blocks to train on smaller datasets that are applica-
tion-specific imaging platforms and there is promise for applying this to other imaging modal-
ities, such as MRI/x-ray, etc.
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Introduction

Significant technical advances have allowed researchers to break through the fundamental limits
in biomedical imaging resolution and speed, subsequently leading to significant improvements
in data analysis and interpretation.1–3 However, many of these approaches require specialized
equipment and training, limiting their applicability. For example, the diffraction limit in fluores-
cence microscopy has been overcome by a wide variety of super-resolution (SR) techniques.4–7

To make these technical advances more widely available, machine learning (ML) approaches
have been used to estimate SR images obtained from those techniques while using conventional
and commonly available imaging platforms.8–10 These ML models are powerful and easily
distributable; however, they require significantly large training datasets9,10 (≥10;000 images)
that are often prohibitively expensive and time-consuming to generate. This limitation is espe-
cially true for biomedical imaging such as in vivo imaging, magnetic resonance imaging (MRI)
imaging, and x-ray.11–14 In addition, the imaging experimental setup for the above-mentioned
applications is specific to those applications (denoted as application-specific) with variance
across experimental equipment. Without large training datasets, existing ML models are less
accurate and not capable of generating SR images from diffraction-limited (DL) images.

In this paper, we develop, demonstrate, and evaluate using a small training dataset (much
less than 1000 images) with convolutional neural network (CNN) models by incorporating
new dense Encoder-decoder (“DenseED”) blocks15 that can successfully estimate fluorescence
microscope images with resolution enhancements. To illustrate this method, we trained a CNN
with DenseED blocks using small training datasets, which increased both the resolution by a
factor of 2 and the peak signal-to-noise ratio (PSNR) by 3.2 dB. Such performance is not
possible using conventional CNNs without DenseED blocks. The results show how ML models
can be novel for specific equipment and applications using small datasets acquired by that
specific tool.

2 Methods and Dataset Creation

2.1 Traditional Super-Resolution Methods

Fluorescence microscopy is a key research tool throughout biology.16 However, the spatial
resolution of an image generated by conventional fluorescence microscopy is limited to a few
hundred nanometers defined by the diffraction limit of light.17 The limited resolution hinders
further observation and investigation of objects at a subcellular or molecular scale, such as mito-
chondria, microtubules, nanopores, and proteins within cells and tissues. Many fluorescence
microscopy SR methods can overcome the diffraction limit and achieve better resolutions up
to ten times greater than conventional microscopy techniques. Experimental methods, such
as stimulated emission depletion (STED),4 structured illumination microscopy (SIM),5 and
non-linear SIM18,19 perform SR imaging; typically, they require dedicating imaging platforms.
Exploiting the non-linearity of excitation saturation in scanning microscopy enables SR micros-
copy in conventional microscope platforms.20–22 Localization and statistical approaches, includ-
ing stochastic optical reconstruction microscopy (STORM)6 and photoactivated localization
microscopy (PALM)7 can also enhance the image resolution but require special fluorophores
and extensive computation. Computational methods, such as SR radial fluctuation (SRRF),23

can be used to perform SR imaging. SRRF can generate images with a resolution comparable
to localization approaches without requiring complicated hardware setups and special imaging
conditions. Even so, it requires numerous DL images to be collected within a single FOVand is
computationally expensive. To achieve the benefits of SR techniques on conventional imaging
platforms, ML approaches can be used.

2.2 ML-Based Super-Resolution Methods in Literature

The ML has gained attention for its fast processing speed and wide applications, such as image
classification,24,25 image denoising,10 image segmentation,26 and image compression.27,28 The
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ML models achieve high performance and generalization capacity when trained with a large
training dataset.10 However, obtaining a large training dataset is often prohibitively expensive
or difficult.29 In addition, the variance between the same models of the experimental equipment
can be large (due to each application-specific equipment calibration/setup setting being differ-
ent), making generalizability difficult.30 Hence, the training dataset size is often limited and
application specific. Nonetheless, existing ML models show high performance when trained
with a large training dataset. Hence there is a trade-off between application-specific ML model
performance vs. training dataset size.31–35

In the literature, existing ML-based SR methods can be classified into two categories:36 fully
convolutional networks (FCNs) and generative adversarial networks (GANs). FCNs contain a
combination of encoder and decoder blocks37 as shown in Fig. 1. Some examples of FCN archi-
tectures are U-Net,39 dense nets,15 residual nets,40 and AEs.9 The FCN architecture includes
multiple encoder and decoder blocks (convolutional layers), and the output is generated by com-
bining the output of encoder layers from different convolutional layers in encoder and decoder
blocks (refer to Fig. 1). To pass the features generated in the encoder blocks to the corresponding
decoder blocks, Skip connections are helpful (refer to Fig. 1). GAN architecture is based on
simultaneously optimizing two networks (generator and discriminator).41 Two networks com-
pete to generate the best images similar to target images from input images. In GANs, the gen-
erator network is a simple FCN (i.e., the generator consists of encoder and decoder blocks). The
discriminator network consists of convolutional layers followed by the fully connected layers
that generate the probability that the generator network output (estimated SR image here) looks
like the real image (similar to the target image). Because the GAN generator architecture is a
simple FCN architecture (to generate SR images), in this paper we show our demonstrated
approach using only FCN architecture. Additional details about GANs, including GAN encoder
and decoder, can be found in these references.42–47 More details about the GANs including archi-
tecture, loss function, and optimization are provided in our GitHub location (https://github.com/
ND-HowardGroup/Application-Specific-Super-resolution.git).

Fig. 1 Block diagram of fully convolutional networks with Skip connections, including the encoder
and decoder blocks. Here the network indicates the AE and U-Net architectures without and
with Skip connections,38 respectively. Encoder and decoder blocks consist of batch-norm, ReLU
(rectified linear unit), and convolution layers. Conv(s2) and ConvT (s2) indicate the convolution
and convolution transpose layers with a stride of 2, respectively. The symbol � represents the
concatenation layer that combines the output from the encoder layer and decoder layer in the
number of channels dimension.
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In addition, advanced ML models such as zero-shot SR (ZSSR)48–51 and one-shot SR
(OSSR)52–54 with CNNs have been demonstrated to estimate high-resolution (HR) images from
low-resolution ones. In the case of the ZSSR, the ML model is trained with the test image itself
(hence, no-training dataset, and it is an unsupervised ML method), and performance is limited
due to no training dataset. In the case of the OSSR, an extensive training dataset is used to get the
HR features, and ML model weights are stored. After that, a small training dataset is used to
retrain the ML model with pretrained model weights. Hence, in the OSSR case, you need two
training datasets with similar features in the application-specific imaging. However, these ML
models in the literature are trained on color images with datasets such as Set5 dataset,55 BSD100
images,56 and DIV2k images57 but not on application-specific for example, fluorescence micros-
copy datasets.29 Wang et al.51 provided a consolidated summary of SR methods in deep learning.
In application-specific SR generation, the existing computational methods that use no training
data (self-supervised learning) are computationally expensive (iterative methods like image
deconvolution) and lead to poor performance. In contrast, if the training dataset is large, the
existing ML-based models provide higher performance, but acquiring a large training dataset
(DL and target images) is computationally expensive. Hence, finding a balance between the
training dataset size and generated SR images quality is significant, and this paper contributes
by showing anML-based method to mitigate the issue by providing SR images accurately even if
the ML model is trained with a small training dataset with input as DL image and target as SR
image, respectively. Furthermore, this ML model can be applied to other application-specific SR
generation with a small dataset.

In fluorescence microscopy, traditional FCNs have been applied to generate SR images from
simulated and experimental data. The trained ML model (FCN) performance is evaluated by
comparing the estimated SR images with the target images acquired using SR microscopes.
Table 1 shows a few examples of ML models including architecture (either FCN or GAN) and
the size of the training dataset used in literature to generate fluorescence microscopy SR images.
In Nehme’s work,9 the FCN architecture consists of three encoders and three decoder blocks,
respectively, and is trained with 7000 images. In Ayas’s work,58 the FCN architecture includes a
20-layer residual network with blood samples trained with 16,000 images. In Wang’s work,59 the
architecture is GAN with the generator network similar to the U-Net39 architecture, and the dis-
criminator network consists of fully connected layers trained with 2000 bovine
pulmonary artery endothelial (BPAE) cells sample images for each fluorophore. Similarly,
in Zhang’s60 work the ML model is GAN architecture consisting of a generator network with
16-layer residual connections, and a discriminator network consisting of fully connected layers
with 1,080 images of fibroblast in a mouse brain. Finally, in Ouyang’s work61 a GAN archi-
tecture with the generator network consists of U-Net with (8,8) encoder and decoder blocks,
respectively, and the discriminator network consists of fully connected layers trained with
30,000 PALM images of microtubules. Despite the ability to obtain SR images from DL images,
all of the above-mentioned ML-based SR models are data-driven. These trained ML models
require a large training dataset (more than 1000 images) to generate SR images in fluorescence
microscopy.

Table 1 Summary of existing ML SR methods with fluorescence microscopy data.

Papers Architecture Training dataset Size Sample details

Deep-STORM9 FCNs 7000 Microtubules

Residual CNN’s58 FCNs 16,000 Blood samples

GANs structure59 GANs 2000 (each fluorophore) BPAE samples and nano beads

RFGANs60 GANs 1080 (increase in FOV) Fibroblast in mouse brain

ANNA-PALM61 GANs 30,000 Microtubules and nanopores
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2.3 FCN with Dense Encoder-Decoder

This section explains the DenseED method and how it is derived from the existing FCN archi-
tecture to provide SR images when trained with a small training dataset. FCNs62 are used for
pixel-wise prediction, e.g., semantic segmentation,39 image denoising,10 SR36 and low dose com-
puter tomography x-ray reconstruction.63 Figure 1 shows the FCN architecture with encoding
and decoding blocks with Skip connections. The convolutional layer contains the input image
convolved with a kernel that extracts particular features from the input images (for example,
edges, backgrounds, and objects with different shapes). Here the number of kernels used in the
convolutional layer is called the “number of feature maps” and the output of the convolution
indicates the “feature map” with its dimension as “feature map size.” Typically an encoding
block contains the convolutional layer with double feature maps and half of the feature map
size. Encoder block is used to extract important features, thereby reducing feature map size
to half. In this way, we select only the essential features as the output of the encoder block.
The decoder block works exactly opposite to the encoder block; its output reduces the number
of feature maps to half and doubles the feature map size. Extracting complex features, such as
SR images, from DL images requires more encoder and decoder blocks in the ML model.

However, the feature map reaches a minimum image dimension with more encoding blocks,
and SR images cannot be restored using decoder blocks alone without Skip or residual or dense
connections, due to vanishing the gradients issue in deep learning64,65 (see Fig. 1). In other
words, coarse features are not passed through the decoder blocks in the case of deep networks.
However, this requirement is not necessary when ML models contain only a small number of
encoder and decoder blocks. This minimum image dimension of the encoder is called the “latent
space.” Additionally, as the number of encoder and decoder blocks increases, the number of
kernel parameters (i.e., weights of the neural network) increases exponentially, which is param-
eter inefficient (requiring considerable computation time) for the ML model. As the number of
encoder and decoder blocks increases, the feature map size is reduced, and the essential features
are lost. Therefore, “Skip connections” are introduced between encoder and decoder blocks to
pass finer features (such as mitochondria and microtubules) to the decoder blocks from encoder
blocks. This modified FCN architecture, called “U-Net,”10,39 is shown in Fig. 1 with dashed
arrows; � indicates the concatenation of features from the encoder block and the output of the
previous decoder block. Another ML model that belongs to the FCN architecture is the
“Residual-Net,”66 which consists of residual layers (or Skip connection from input to output
directly) where input is passed through a couple of convolutional layers. Each convolutional
layer consists of convolution, nonlinear elements (such as ReLU), and normalization (batch
norm) layers. The last convolutional layer output is concatenated with the input. The estimated
output image from the convolutional layer is the residual between target and input images
(for example, noise: the subtraction of the noise input with a clear target).

To allow for the FCNs with higher performance when trained with a small training dataset,
the modified residual connections are helpful. These modified residual connections were origi-
nally developed for physical systems and computer vision tasks. DenseED67 is the state-of-the-
art CNN architecture (modified version of residual layers) due to its backbone of dense layers,
which passes the extracted features from the previous layer to all next layers in a feed-forward
fashion. This paper shows how to utilize these DenseED blocks to build our SR ML model that
works with a small dataset. Figure 2(a) shows the demonstrated ML model (DenseED in FCNs)
for SR using an ultra-small training dataset. Figure 2(a) is similar to Fig. 1 but with additional
DenseED blocks added after the encoder and decoder blocks. Figure 2(b) shows the DenseED
block, which consists of multiple dense layers, which is another way of passing features from
one layer to the next. Dense layers15,68 are used to create dense connections between all layers to
improve the information (gradient) flow through the complete ML model for better parameter
efficiency. Figure 2(c) shows the dense layer connection for i’th dense layer with input feature
maps of x0 (output of the previous layer) and passed through the dense layer with output feature
maps of x1; total feature maps are the concatenation of input and output feature maps [x0, x1].
In the dense layer, the convolution operation is performed with a stride of 1. Figure 2(b) shows
a dense block with three dense layers, where each layer provides two feature maps as output.
The dense layer establishes connections from the previous convolutional layer to all subsequent
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convolutional layers in the dense block. In other words, one layer’s input features are concat-
enated to this layer’s output features, which serve as the input features to the next layer. If the
input has K0 feature maps and each layer of the outputs has K feature maps, then the i’th layer
would have an input with K0 þ ði � KÞ feature maps, i.e., the number of feature maps in dense
block grows linearly with the depth, and K here is referred to as the growth rate. More dense
layers are required for the given feature map size within a dense block to access the complex
features. With more dense layers in a dense block, the total output feature maps increase linearly
with the growth rate K.

For image enhancements in FCNs, encoding and decoding blocks are required to change
feature maps’ size, making the concatenation of feature maps unfeasible across different feature
map size blocks. Hence particular encoding and decoding blocks are used to solve this problem.
A dense block contains multiple dense layers whose input and output feature maps are the same
size. Each dense block has two design parameters: the number of layers L and the growth rate K
for each layer. We consider the growth rate K a constant value for all the dense blocks in our
work. Here the encoding block typically is half the feature map size, whereas the decoding block
doubles the feature map size. Both two blocks reduce the number of feature maps to half.
Figure 2(a) shows the complete FCNs with the DenseED (SRDenseED) ML model used to gen-
erate the SR images using a small training dataset. Dense blocks, encoding blocks, and decoding
blocks are marked with different colors as shown in Fig. 2(a). In this work, we set the growth rate
to 16, the number of dense blocks to 3, and the number of dense layers in the first, second, and
third dense blocks are 3, 6, and 3, respectively.

2.4 Dataset Creation

To show the trained ML model’s performance, careful selection of the training dataset is essen-
tial. In this paper, two different datasets are used to demonstrate our approach. First, the W2S
dataset (Widefield2SIM), which includes experimentally captured DL images (using widefield
microscopy) and target images (using SIM microscopy).69 Second, the BPAE dataset, which
includes experimentally captured DL images (using custom-built multi-photon fluorescence
microscopy70) and computationally generated target images (using SRRF technique23).

The W2S dataset includes 120 field of view (FOV) widefield DL fluorescence microscopy
images (low-resolution: LR) and corresponding 120 FOV SIM images (HR). These experimental
images are captured with two different fluorescence microscopy (widefield for LR images and
SIM for HR images) and cells are real biological samples, namely, human cells.69 In each
FOV, three different channels (488, 561, and 640 nm) are recorded, and we consider them
as individual gray-scale images during the training and inference stages. 400 images of the same
FOV are captured and averaged to generate a noise-free DL image. Each image has a size of
512 × 512 pixels divided into four chunks of 256 × 256 pixels. Each FOV corresponds to
51.2 μm × 51.2 μm (where each pixel size is 100 nm). Before the training process, all the images

(a) (b)

(c)

Fig. 2 Block diagram of fully convolutional networks with dense blocks: (a) dense blocks consist of
multiple dense layers (b) where each dense layer’s input feature maps are concatenated progres-
sively. (c) The dense layer consists of the batch norm, ReLU, and convolution layer with stride 1 in
sequence order.
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in the training dataset are normalized, and normalization is explained in Sec. 2.6. In the case of
the W2S dataset, with noise-free (average of 400 images in the same FOV) DL images and noisy
(no average of images in the same FOV) DL images as input to the training dataset. In each case,
the target image is the experimentally captured SR image (SIM setup).69

In the BPAE dataset, the BPAE sample (Invitrogen FluoCells slide #1, F36924 contains
Nuclei, F-actin, and Mitochondria) was imaged with our custom-built two-photon fluorescence
microscopy system70 that provides DL images as input of the training dataset. The custom
setup consists of an objective lens with 40x magnification (0.8 numerical aperture and 3.5 mm
working distance). The two-photon excitation wavelength is 800 nm (for the one-photon system,
the excitation wavelength is 400 nm), sample power is six mW, pixel width is 200 nm,
pixel dwell-time, 12 μs, and the emission wavelength filter is from 300-700 nm. We used
a photomultiplier tube (PMT) to convert the emission photons to current, followed by the
transconductance amplifier (TA) to convert them to voltage. A total of 16 FOVs of the BPAE
sample were captured, where each FOV consists of 50 DL images, and each image has a size of
256 × 256 pixels. The images in the 8’th FOVare used as the test dataset, and the remaining 1 to
7 FOVs and 9 to 16 FOVs data are used as the training dataset. Hence the training dataset size is
15 FOVs. We used the SRRF technique23 to generate SR target images from the DL images.
Fifty images of the same FOVare captured and averaged to create a noise-free DL image. Each
image has a size of 256 × 256 pixels divided into four chunks of 128 × 128 pixels. Before the
training, all the images in the training dataset are normalized, and normalization is explained in
Sec. 2.6. More details of the SRRF are provided in the results section (please see Sec. 3.2).
In addition, this BPAE dataset is provided as open source to validate the performance of
the estimated SR images when trained with small datasets. More details about the dataset are
provided in the Code and Data Sec. 4.

In this study, we show the effect of the SRDenseED method in FCNs using both W2S and
the BPAE datasets.

2.5 Hyperparameters

Hyper-parameter search is a critical step in deep learning for quick and accurate results, primarily
problem-specific and empirical. Typical hyper-parameters in FCN architecture are batch size,
optimizer, and learning rate and are carefully tuned for achieving the best fluorescence micros-
copy image SR performance. The batch size used in the training stage is set to 3. The “Adam”
gradient descent algorithm71 is used to optimize the loss function between the estimated and
target SR images during training. The initial learning rate is set to 3E-3, and weight decay
is used to reduce the over-fitting problem to 3E-4. In addition, these parameters are fixed for
all ML models: the number of feature maps in the first convolution layer is set to 48, the number
of output feature maps is set to 16 (k-value) in every dense block, and the number of epochs is set
to 400 such that the loss function reaches a stable point, the number of dense blocks to 3 and the
number of dense layers in first, second, and third dense block are 3, 6, and 3, respectively. The
training time varies with the training dataset size, and for the small dataset (for 90 FOVs), the
training time is less than 4 hrs on a single Nvidia 1080-ti GPU. The number of parameters (kernel
weights) for simple FCN (U-Net with three encoders and three decoders) architecture and FCN
with three DenseED blocks is 286,704 and 237,204, respectively. More details about the ML
model architectures can be found in the Code section.

2.6 Data Processing

Typically, biomedical images are too large to fit on a single GPU. Hence images are divided
(input and target) into smaller patches when training the ML models. Normalization is applied as
part of the pre-processing step to each image before passing it to the ML models (both simple
FCNs and FCNs with the SRDenseED ML model). The input to the ML model is an image (I)
that is linearly normalized by dividing with the maximum intensity value (here, the maximum
value is 255 since images are 8-bit) and subtracting 0.5. Hence, all the pixel values passed
through the ML model are always normalized (Inorm) and lie between −0.5 and 0.5
(Inorm ¼ I∕255 − 0.5). In addition, the target SR images are normalized the same as DL images,
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and the pixel values lie between −0.5 and 0.5. As part of the post-processing, the output (Onorm)
from the ML models is post-processed using the de-normalization step using this equation
(Odenorm ¼ ðOnorm þ 0.5Þ � 255). Finally, the estimated SR images are converted to 8-bit images
to match the input (DL) and target (SR) image format.

2.7 Forward Modeling in Super-Resolution Imaging

In the literature on the computer vision or ML, HR images are taken from a high-quality instru-
ment, which is typically expensive. The high-quality instrument provides minimal artifacts such
as better resolution (better point spread function (PSF)) and low noise in the HR images, in this
case, low-resolution (LR) images are generated using forward modeling and given in ILR ¼
ðIHR � PSFþ nÞ, where ILR is the LR image derived from HR image, IHR is the HR image
captured using an expensive instrument, PSF is the point spread function to generate LR image
from HR image, � is the convolution operation, n additive white gaussian noise with zero mean
and σ standard deviation Nð0; σÞ. Hence, this generation method of LR images provides a blur
due to the convolution of PSF, which is a 2D-Gaussian function. In this case, the ML model
works as an inverse problem to detect the HR image from the LR images (which is an alternative
to a conventional iterative deconvolution method72–75). Other research areas use SR in the con-
text to upscale the low-resolution image from N × N image toMN ×MN, whereM is the scaling
factor, typically, M is either 2, 3, or 4. Hence, the forward modeling is given by ILR ¼
ðIHR � PSFÞ, where ILR is the LR (down-sampled) image of size N × N, IHR is the HR
(upsampled) image of size MN ×MN, PSF is the Gaussian function to downsample the image,
and � is the convolution operation. In this case, the ML model works as an inverse problem to
detect the upsampled/up-scaled (HR) image from the down-sampled/down-scaled (LR) images.
In contrast, in the case of optical microscopy, the low-resolution images are captured using an
instrument that cannot separate close-by cells/samples.76 Typically, this instrument is low in cost
with limited resolution. Hence, the low-resolution images in this field are called “DL images.”
Also, the HR images are captured using an expensive instrument/technique that provides HR
(which can separate the cells), and HR images are called “SR images.” Because both the DL and
SR are captured using two different instruments, adequate data processing is required to show
that both images indicate the same FOV. Hence, in our paper, the DL and SR images are from
two instruments with different PSF values. Forward modeling is given as IDL ¼ Ioriginal � PSFDL,
ISR ¼ Ioriginal � PSFSR where Ioriginal is the true object need to image (cells or structure under a
microscope); IDL and ISR are DL and SR images, respectively, when the Ioriginal is captured with
two different systems with PSF values as PSFDL and PSFSR, respectively; and � indicates con-
volution operation. In this case, the ML model works as an inverse problem to detect the SR
images from the DL images. For example, in the W2S dataset, the DL and SR images are cap-
tured using wide-field and SIM microscopy systems, and each instrument has a different PSF
function. More details about the DL and SR images in the W2S dataset, including image acquis-
ition systems, are provided in the original W2S paper.69 Finally, in the BPAE dataset, only DL
images are captured using our custom-built fluorescence lifetime imaging microscopy (FLIM)
system,70 and corresponding SR images are generated using a computation method called
“SRRF”.23 More details about the BPAE datasets are provided in Sec. 3.2.

2.8 Evaluation Metrics

Several metrics are used to evaluate the estimated SR images compared with the target SR
images. These metrics include structural similarity index measurement (SSIM),77 PSNR,58 mean
square error (MSE/L2 norm), mean absolute error (MAE/L1 norm), resolution scaled Pearson’s
correlation coefficient,78 resolution scaled error,78 and Fourier ring coefficient (FRC), which
measures the close matching (in structures, brightness) of the estimated SR images compared
to target SR images.78 The smaller value of FRC indicates a better SR image matching the target
SR image,78 with the value of 1 perfectly matching the target SR image. The SSIM and PSNR are
the most common metrics to quantify the estimation of SR images.58 To quantitatively evaluate
the estimated SR images containing similar image features as the target SR image, we calculate
the SSIM between the two. SSIM compares luminance, brightness, and contrast values as a
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function of position77 and measure the similarity between two images on a scale of 0 to 1, with 1
being perfect fidelity. In addition, we evaluate the PSNR of the estimated image relative to a
target SR image. PSNR is the measure of MSE between two images normalized to the peak value
in an image so that MSE between images with different bit depths or signal levels can be com-
pared. PSNR of a given (X) with reference to ground truth image (Y) in the same FOV is defined

as PSNRðX; YÞ ¼ 10 logð maxðYÞ2
MSEðX;YÞÞ, where MSEðX; YÞ ¼ 1

N

P
N
n¼1 ðXn − YnÞ2 is the average

MSE of X and Y with N pixels. The highest SSIM and PSNR represent the most accurate esti-
mation of the SR image, similar to the target SR image. Hence, this paper evaluates the estimated
SR images using SSIM and PSNR metrics.

3 Experimental Results and Discussion

3.1 SRDenseED with Experimental SR Techniques

This section shows the training and prediction results (including 30 FOVs) with and without the
SRDenseED method in FCN architecture trained using experimentally captured W2S dataset
with training dataset size of 5 FOVs, 15 FOVs, 30 FOVs, 45 FOVs, 60 FOVs, 75 FOVs, and
90 FOVs. An estimated SR image from the test dataset validates the trained ML model’s accu-
racy from a DL image during the testing phase. For the comparison purpose, we considered
output from the joint denoising and SR (JDSR) results from the original W2S paper69 that pro-
vided the W2S dataset. In this experiment, initially, we choose noise-free diffraction images (see
Sec. 2.4) that have high PSNR values as part of the training dataset since the noise in the exper-
imental images degrades the performance of the trained ML models. Later in this section, using
noisy diffraction images (see Sec. 2.4) that have low PSNR values as training dataset results are
illustrated. In the following experiments, a U-Net architecture39 with three encoder and decoder
layers indicated as simple FCNs. Similarly, in the SRDenseED method, we have selected
DenseED(3,6,3) ML model as FCNs with DenseED blocks, where the number of dense layers
in the first, second, and third dense blocks are 3, 6, and 3, respectively.

3.1.1 Training performance using high PSNR W2S dataset

For the first part, the ML training dataset includes the noise-free (high PSNR) DL images as
input and SIM SR images as a target, respectively.

First, we train a simple FCN architecture similar to the U-Net39 ML model, consisting of
three encoders followed by three decoder blocks with the same small dataset. Later, we train
the SRDenseED ML models with the same small dataset. The SRDenseED ML model diagram
is shown in Fig. 2(a). Different DenseED models’ performance can be checked by changing the
number of dense blocks and dense layers in each dense block. We start by verifying the ML
model’s performance with three dense blocks but variable dense layers in each dense block. In
this case, the SRDenseED method includes 3, 6, and 3 dense layers in the three dense blocks,
respectively. In addition, the non-linear activation layer is set to ReLU, the loss function is the
MSE loss between the estimated and target SR images, the learning rate is set to 0.003, and the
weight decay that is used to regularize the weights without over-fitting the model is always set to
1

10th
of the learning rate. We perform testing on a test dataset (including 30 FOVs) of images that

the model never sees during the training step. The hyperparameters are set to the same for simple
FCNs and SRDenseED methods. Figure 3 shows the quantitative results of the noise-free DL
images as input and SIM images as target images in the training datasets. The SRDenseED
model outperforms PSNR compared to conventional FCN networks, and this trend can be seen
in the training dataset size. From Fig. 3, especially at the small training dataset size (15 FOVs),
there is an average improvement of 1.35 dB in PSNR when using the SRDenseED ML model.

In addition, Fig. 4 shows the quantitative results of PSNR and SSIM over the test dataset
(includes 30 FOVs of 3 channels) of estimated SR images from the noise-free DL images. Based
on the quantitative results of PSNR and SSIM, the SRDenseED ML models can provide better
and more accurate SR images than simple FCN networks when trained using a small training
dataset. Even training with a small training dataset (15 FOVs) SRDenseED method can generate
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SR images with an average PSNR improvement of 1.35 dB, and this SRDenseED method is
helpful in biomedical imaging (x-ray and MRI imaging) to generate SR images. In the
SRDenseED method, the PSNR improvement, when trained with a 90 FOVs dataset, is only
0.71 dB more (a difference of 2.02 dB PSNR improvement from 90 FOVs and 1.31 dB from
15 FOVs training data) when compared with simple FCNs. Table 2 shows the estimated
SR images’ average PSNR when trained with high PSNR noise-free DL images. Here, the
SRDenseED method outperformed compared to simple FCNs when trained with a small dataset
and confirmed the technique works for application-specific imaging.

Figure 5(a) shows one of the DL noise-free images drawn randomly in the test dataset (10’th
FOV, channel 1) as the qualitative representation. Figure 5(b) shows the estimated SR image
from the pretrained ML models given in Ref. 69 and is unable to show the clear structures
in the estimated SR image. Figure 5(c) shows the estimated SR image within the same FOV
when trained with the SRDenseEDML model with a training dataset of 30 FOVs, and this image
has better PSNR compared to the raw DL image. Figure 5(d) shows the target SR image captured
using the SIM setup and in the same testing FOV. From Fig. 5, the PSNR of the noise-free input
image and estimated SR image using the JDSR method69 and estimated SR image using the
SRDenseED method (trained with 15 FOVs) are 19.22 and 17.84, 22.45 dB, respectively. In
this case, there is a PSNR improvement of -−1.38 dB, and 3.23 dB of the randomly selected
test image using the JDSR method69 and our SRDenseED methods, respectively. Similarly, the
SSIM values of the noise-free input image and estimated SR image using the JDSRmethod69 and

(a) (b)

Fig. 4 W2S dataset PSNR: (a) and SSIM (b) versus training dataset size using SRDenseED net-
works trained using the high PSNR noise-free DL images.

Fig. 3 W2S dataset average PSNR of the test dataset (includes 30 FOVs) versus training dataset
size using simple FCNs and SRDenseED networks. Here, the ML models are trained using the
high PSNR noise-free DL images.
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estimated SR image using the SRDenseED method (trained with 15 FOVs) are 0.64, 0.63, and
0.82, respectively. In addition, the calculated unscaled FRC value78 of the noise-free input
image and estimated SR image using the JDSR method69 and estimated SR image using the
SRDenseED method (trained with 15 FOVs) are 3.95, 4.15 and 3.77, respectively. From all
quantitative metrics, our SRDenseED method provides better SR images than the JDSR method.

3.1.2 Training performance using low PSNR W2S dataset

However, obtaining noise-free images in real-time measurements is difficult (when dynamic
processes are included) and time-consuming (needing multiple averages with the same

(a) (b) (c) (d)

Fig. 5 Sample from theW2S dataset: (a) noise-free DL image, (b) estimated SR image from JDSR
method,69 (c) estimated SR image from the SRDenseED (ours) MLmodel (test image is taken from
10’th FOV, channel 1), and (d) is the experimentally captured target SR using SIM microscopy.
Here the input sample is a DL noise-free image. The top row indicates the full frame (of size
512 × 512), and the bottom row indicates the region of interest (ROI: marked in the yellow square
of size 100 × 100) from the respective top row images. Scale bar: 10 μm.

Table 2 Quantitative comparison of average PSNR (dB) on test dataset (includes 30 FOVs) of
simple FCNs and SRDenseED methods with different training dataset sizes. Here, the ML models
are trained using the high PSNR noise-free DL images and ΔPSNR ¼ PSNR from SRDenseED
method - PSNR from simple FCNs.

Training dataset
size (noise-free)

Simple FCN
[PSNR (dB)]

SRDenseED
[PSNR (dB)] ΔPSNR

Input 15.78 15.78 N/A

5 19.96 21.27 1.31

15 20.08 21.43 1.35

30 19.86 22.37 2.51

45 20.52 22.47 1.95

60 20.44 22.51 2.07

75 20.72 22.99 2.28

90 20.86 22.89 2.02
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FOV). Hence, the following results show the performance of our demonstrated SRDenseED ML
model when trained on DL noisy images.

The response of the trained ML models using a small dataset with simple FCNs and
SRDenseED ML models are analyzed with noisy DL images as input. Figure 6 shows the quan-
titative results of the noisy DL images as input and SIM images as target images in the training
datasets. The SRDenseED model outperforms PSNR compared to simple FCNs, and this trend
can be seen over the training dataset size (even though the images are noisy and DL). From
Fig. 6, especially at the small training dataset size (15 FOVs), there is an average improvement
of 0.92 dB in PSNR when using the SRDenseED ML model. In addition, Fig. 7 shows the
quantitative results of PSNR and SSIM over the test dataset (includes 30 FOVs of 3 channels).
Based on the quantitative results of PSNR and SSIM, the SRDenseED ML models can provide
better and more accurate SR images when trained with a small training dataset. Table 3 shows the
estimated SR image quantitative metrics when trained with low PSNR noisy DL images. Again,
the SRDenseED method outperformed compared to simple FCNs when trained with a small
dataset and confirmed the technique works for application-specific imaging. Here the results
are not meant to be used as any generalized SR images instead the results are meant for the
application-specific imaging modalities/configurations.

Figure 8(a) shows one of the DL noisy images in a test dataset (10’th FOV, channel 1).
Figure 8(b) shows the estimated SR image from the pre-trained ML models given in Ref. 69
and is unable to show the clear structures in the estimated SR image. Figure 8(c) shows the

Fig. 6 W2S dataset average PSNR of the test dataset (includes 30 FOVs) versus training dataset
size using simple FCNs and SRDenseED networks. Here, the MLmodels are trained using the low
PSNR noisy DL images.

(a) (b)

Fig. 7 W2S dataset PSNR (a) and SSIM (b) versus training dataset size using SRDenseED net-
works trained using the low PSNR noisy DL images.
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estimated SR image within the same FOV when trained with the SRDenseED ML model, and
this image has better PSNR compared to the raw DL image. Figure 8(d) shows the target SR
image captured by SIM setup within the same testing FOV. From Fig. 8, the PSNR of the noisy
input image and estimated SR image using the JDSR method in W2S paper, and the estimated
SR image using the SRDenseED method (trained with 15 FOVs) are 16.72 and 17.41, 20.11 dB,
respectively. Hence, in this case, a PSNR improvement of 0.69 and 3.39 dB of the randomly
selected test image using the JDSR method and our SRDenseED methods, respectively.
Similarly, the SSIM values of the noisy input image and estimated SR image using the
JDSR method and estimated SR image using the SRDenseED method (trained with 15 FOVs)
are 0.19, 0.59, and 0.69, respectively. As expected, the JDSR method improved PSNR when
the input image is noisy compared to noise-free, where the significant contribution is from

(b) (c) (d)(a)

Fig. 8 Sample from the W2S dataset: (a) noisy DL image, (b) estimated SR image from JDSR
method,69 (c) estimated SR image from the SRDenseED (ours) MLmodel (test image is taken from
10’th FOV, channel 1), and (d) is the experimentally captured target SR using SIM microscopy.
Here the input sample is a DL noisy image. The top row indicates the full frame (of size 512 × 512),
and the bottom row indicates the region of interest (ROI: marked in the yellow square of size
100 × 100) from the respective top row images. Scale bar: 10 μm.

Table 3 Quantitative comparison of average PSNR (dB) on test dataset (includes 30 FOVs) of
simple FCNs and SRDenseED methods trained with different noisy dataset sizes. Here, the ML
models are trained using the low PSNR noisy DL images and ΔPSNR ¼ PSNR from SRDenseED
method - PSNR from simple FCNs.

Training dataset
size (noisy) Simple FCN [PSNR (dB)] SRDenseED [PSNR (dB)] ΔPSNR

Input 15.67 15.67 N/A

5 19.54 19.86 0.31

15 19.45 20.38 0.92

30 19.86 20.78 0.91

45 20.09 20.76 0.68

60 20.04 20.72 0.68

75 20.52 20.84 0.32

90 20.19 21.20 1.01
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the image denoising step. In addition, the calculated unscaled FRC value78 of the noise-free input
image and estimated SR image using the JDSR method69 and estimated SR image using the
SRDenseED method (trained with 15 FOVs) are 5.80, 5.59 and 5.43, respectively. From all
quantitative metrics, our SRDenseED method provides better SR images than the JDSR method.
We observe that our SRDenseED method (trained with 15 FOVs) provides accurate SR images
by providing an average PSNR improvement of 5.65 (21.43-15.78, see Table. 2) dB and 4.71
(20.38 to 15.67, see Table. 3) dB in noise-free DL images as input and noisy DL images as input,
respectively. In addition, compared to simple FCN architecture, our SRDenseED method
(trained with 15 FOVs) provided an average PSNR improvement of 1.35 and 0.92 dB, in the
case of noise-free and noisy DL input images, respectively.

3.2 SRDenseED with Computational SR Techniques

Generating SR images requires an additional experimental setup, which is expensive, and the
research labs may not have this setup. However, experimental DL image generation is a typical
setup, and SR images can be generated using computational methods. For example, SRRF23 is a
computational method to generate SR images within the same FOV from multiple DL images
(captured with different time instances). In this section, we captured experimental DL images of
BPAE samples (Invitrogen FluoCells slide#1 F36924, mitochondria labeled with MitoTracker
Red CMXRos, F-actin labeled with Alexa Fluor 488 phalloidin, nuclei labeled with DAPI) using
our custom-built two-photon fluorescence microscopy system.70 In this step, the captured images
include noise. The custom setup consists of an objective lens with 40× magnification (0.8
numerical aperture and 3.5 mm working distance). The two-photon excitation wavelength is
800 nm (for the one-photon system, the excitation wavelength is 400 nm), sample power is six
mW, pixel width is 200 nm, pixel dwell-time, 12 μs, and the emission wavelength filter is from
300-700 nm. In our imaging system, all the fluorophores-labeled organelles are excited together
using a single excitation wavelength (in this case, 800 nm) and get the collective emission
together using a bandpass filter (300-700 nm) that shows all the fluorophores together in the
fluorescence intensity image. We used a PMT to convert the emission photons to current,
followed by the TA to convert them to voltage. More details about the setup can be found in
Ref. 70. A total of 16 different FOVs (small training dataset) of the BPAE sample are captured
using our system, where each FOV consists of 50 raw images, and each image has a size of
256 × 256. The target SR images are generated using the SRRF technique. SRRF method
performs two steps,23 i.e., spatial and temporal steps, to generate SR images. Spatial SRRF
estimates and maps the most likely positions of the molecules, followed by temporal SRRF to
improve the resolution of the final SR SRRF image using spatial resolution step statistics. The
center of the fluorophores is estimated and mapped to a “radiality” map in simple terms. SRRF
method provides the SR image in the subpixel range (with a magnification of 5 times by default)
and reshapes it (using bilinear interpolation) to the raw image dimension 256 × 256. Note: SRRF
can provide inaccurate target results if the parameters are not set correctly during this target
generation stage and more details can be found in Ref. 23.

The experimentally captured DL images (also noisy) and SRRF-generated images are used as
the input and target of the small training dataset, respectively. Normalization is applied to each
image before passing it to the FCNs with the SRDenseED ML model. The image normalization
is conducted by dividing the maximum value in the data type (here, the maximum value is 255)
and subtracting 0.5. Hence, all the pixel values passed through the ML model are always
normalized and lie between −0.5 and 0.5. The images generated in the 8’th FOV are used as
the test dataset, and the remaining 1 to 7 FOVs and 9 to 16 FOVs data are used as the training
dataset. The training dataset consists of 15 FOVs, called a “small training dataset”. Here the input
is a 16-bit grayscale channel.

The quantitative and qualitative results from the test dataset are shown in Fig. 9 after training
the ML model using the SRDenseED method. Figure 9(a) shows the experimentally captured
(using a custom two-photon FLIM system) nosy DL image of the BPAE sample cell, and
Fig. 9(b) indicates a noise-free DL image within the same FOV. Similarly, Fig. 9(a) shows the
target SR image generated using the computation SRRF method from multiple DL images.
Figure 9(d) shows the estimated SR images from the DenseED (3,6,3) configuration ML model.
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The estimated SR image accurately estimates submicron features (mitochondria) and is com-
parable with the target image. Averaging more images within the same FOV improves the
PSNR (from 21.24 to 21.89 dB) but is unable to find the sub-micron SR structures [see
Fig. 9(b)]. The PSNR values of the noisy DL image, noise-free DL image, and the estimated
SRDenseED image are 21.24, 21.89, and 24.73 dB, as shown in Figs. 9(a), 9(b), 9(d) respec-
tively (with respect to target image as shown in Fig. 9(c)). Hence, there is a 3.49 dB improvement
in PSNR from the trained SRDenseED method compared to the DL noisy test image. The
improvement in the PSNR is due to the identification of small features, and the estimated image
closely matches the target image. Hence, the trained ML model with the SRDenseED method
can achieve SR from the DL images even though the training dataset size is limited. In addition,
Fig. 9(e) provides the qualitative and quantitative metrics on the estimated SR image with a
marked region and corresponding line plots of the trained ML model using the DenseED model
with three dense blocks and 3,6,3 are the dense layers in each dense block respectively. The full
width at half maximum (FWHM) for the DL and estimated SR images are ≈1.2 μm and
≈0.6 μm, respectively, which shows at least 2× resolution improvement. The top row in
Figs. 9(a), 9(b), 9(c), and 9(d) indicates the full frame (of size 256 × 256), and the bottom row
in Figs. 9(f), 9(g), 9(h), and 9(i) indicates the region of interest (ROI: marked in the green square
of size 75 × 75) from the respective full-FOV images.

Additional qualitative and quantitative results with different DenseED configurations are pro-
vided in the GitHub repository (https://github.com/ND-HowardGroup/Application-Specific-
Super-resolution.git) on the estimated SR images of the trained ML models. Variations of the
estimated SR images PSNR and SSIM are shown, including variation in the learning rate, non-
linear activation function, sample dataset size, and the loss function as the mixed loss of MSE
loss and SSIM loss to optimize the MSE loss and SSIM loss simultaneously in FCN architecture.
Also, these demonstrated DenseED blocks could be applied to estimate SR images from
resolution-limited images with GAN architecture with retraining (more results are shown in the
GitHub repository for the W2S dataset and BPAE dataset).

If the test dataset is entirely different from the training dataset, generated SR images might
have some artifacts in the output.79 Also, if the target generation has some artifacts, then the
estimated SR using this trained dataset will also have artifacts. Consider the BPAE dataset, where
the target image is generated using the SRRF computational method, which can provide SR
images with artifacts if the computational parameters are not appropriately set.23 In this case,
the inaccuracy of the ground truth image will affect the performance of the ML model. In addi-
tion, the generalization capability of the trained ML model is limited when trained using a small
training dataset that might also include artifacts such as hallucination effects, blur, and other cells

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 9 BPAE sample DL image: (a) acquired with our custom-built two-photon microscope;70

(b) noise-free image (averaged within the same FOV), and (c) the target SR image generated
by SRRF method. (d) Estimated SR image using the trained ML model with dense blocks in FCN.
The resolution improvement in panel (e) includes the line plots of images shown in (a, b, c, and d in
blue color), respectively, with markers in wine and blue colors indicating the FWHM of DL and
estimated SR images. The top row (a, b, c, and d) indicates the full frame (of size 256 × 256),
and the bottom row (f, g, h, and i) indicates the region of interest (ROI: marked in the green square
of size 75 × 75) from the respective top row images. Pixel width, 200 nm; pixel dwell-time, 12 μs;
and excitation power, 6 mW.
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to display where the estimated SR image has more details than the ground-truth SR image.
Hence it is always recommended to check if the generated SR images have any hallucinations
or artifacts using the existing quantitative metrics such as PSNR, SSIM, and FRC, as mentioned
in Sec. 2.8. To reduce artifacts, additional steps are required when generating SR images, such as
using residual layers.80

Finally, the DenseED block in ML model architectures helps to generate SR images when the
ML model is trained with a small dataset. The performance improvement depends on optimizing
other hyper-parameters and parameters of the network, including learning rate, non-linear acti-
vation, loss function, and weight decay, on regularizing the over-fitting. For the SRDenseED
method, the number of dense blocks and dense layers are also significant in each dense block.
Clearly, from the above experiments, the SRDenseED method provides accurate results com-
pared to simple FCNs.

4 Conclusion

ML models have been previously demonstrated to generate SR from DL images. Such
approaches require thousands of training images, which is prohibitively difficult in many bio-
logical samples. We showed the FCN architectures with the SRDenseED method, including
Dense Encoder-Decoder blocks, to train SR FCNs using a small training dataset. Our results
show an accurate estimation of SR images with denseED blocks in conventional ML models
[see Figs. 5(b), 8(b), and 9(d)]. We showed the estimated SR image PSNR results and compared
them with the target SR images in the case of both experimentally captured SIM setup (as shown
in Sec. 3.1) and computationally generated with the SRRF method (as shown in Sec. 3.2), with
PSNR improvement of 3.66 dB (in case of noise-free DL images) and 3.49 dB, respectively. Our
primary focus was to demonstrate the new ML method (our SRDenseED method) capable of
providing application-specific SR (for example, fluorescence microscopy) images when trained
using a small training dataset. In addition, we used the SRRF method for the target generation
since it is computational and easy to use. Besides, our demonstrated model can work with
other SR target generation methods like STED/STORM/PALM/SIM. While we evaluated the
technique on SR fluorescence microscopy, this approach shows promise for an extension to
other deep-learning-based image enhancements (e.g., image denoising networks,10,81 image
SR,36,43,82–84 image segmentation networks,39 and other imaging modalities like x-ray85–87 and
MRI imaging88).
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