
RESEARCH PAPER

The Image-to-Physical Liver Registration Sparse
Data Challenge: comparison of state-of-the-art

using a common dataset
Jon S. Heiselman ,a,b,* Jarrod A. Collins,a Morgan J. Ringel ,a T. Peter Kingham,b

William R. Jarnagin,b and Michael I. Miga a,*
aVanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States

bMemorial Sloan Kettering Cancer Center, Department of Surgery, Hepatopancreatobiliary Unit, New York,
New York, United States

ABSTRACT. Purpose: Computational methods for image-to-physical registration during surgical
guidance frequently rely on sparse point clouds obtained over a limited region of
the organ surface. However, soft tissue deformations complicate the ability to accu-
rately infer anatomical alignments from sparse descriptors of the organ surface. The
Image-to-Physical Liver Registration Sparse Data Challenge introduced at SPIE
Medical Imaging 2019 seeks to characterize the performance of sparse data regis-
tration methods on a common dataset to benchmark and identify effective tactics and
limitations that will continue to inform the evolution of image-to-physical registration
algorithms.

Approach: Three rigid and five deformable registration methods were contributed to
the challenge. The deformable approaches consisted of two deep learning and three
biomechanical boundary condition reconstruction methods. These algorithms were
compared on a common dataset of 112 registration scenarios derived from a tissue-
mimicking phantom with 159 subsurface validation targets. Target registration errors
(TRE) were evaluated under varying conditions of data extent, target location, and
measurement noise. Jacobian determinants and strain magnitudes were compared
to assess displacement field consistency.

Results: Rigid registration algorithms produced significant differences in TRE rang-
ing from 3.8� 2.4 mm to 7.7� 4.5 mm, depending on the choice of technique. Two
biomechanical methods yielded TRE of 3.1� 1.8 mm and 3.3� 1.9 mm, which out-
performed optimal rigid registration of targets. These methods demonstrated good
performance under varying degrees of surface data coverage and across all ana-
tomical segments of the liver. Deep learning methods exhibited TRE ranging from
4.3� 3.3 mm to 7.6� 5.3 mm but are likely to improve with continued development.
TRE was weakly correlated among methods, with greatest agreement and field
consistency observed among the biomechanical approaches.

Conclusions: The choice of registration algorithm significantly impacts registration
accuracy and variability of deformation fields. Among current sparse data driven
image-to-physical registration algorithms, biomechanical simulations that incorporate
task-specific insight into boundary conditions seem to offer best performance.
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1 Introduction
Image-to-physical registration is an essential component of surgical navigation systems wherein
patient-specific information from preoperative imaging is aligned to the intraprocedural coordi-
nate space of the patient. This alignment process requires an intraoperative data collection step to
acquire intraprocedural shape descriptors of the organ of interest. Several methods have been
developed for three-dimensional measurement of intraoperative organ geometry, including opti-
cal or electromagnetic tracking of tool tips, stereo camera reconstruction, laser range scanning,
tracked ultrasound, and cone-beam computed tomography, among others.1 However, constraints
within the surgical environment require that organ data be collected in an expedient manner
compatible with existing surgical workflows. In consideration of these constraints, the intrao-
perative data most often available to navigation systems consists of intraoperative point clouds
collected over a limited extent of the organ surface exposed during the procedure. In soft tissue
organs, these intraoperative surface measurements not only drive rigid spatial alignments
between preoperative and intraoperative coordinate frames, but they also encode changes in
organ shape that occur between preoperative imaging and intraoperative organ presentation.
The ability to accurately estimate a complete soft tissue deformation field throughout the organ
from these sparse organ surface measurements is a vital objective for many guidance systems
involving soft tissue organs. This inference task is the basis of the sparse data challenge herein,
which focuses on the application of image-guided liver surgery in which organ deformations
frequently reach several centimeters in magnitude.2,3 Rigid and nonrigid registration approaches
have been reported in the literature to accomplish image-to-physical alignment, yet direct
comparisons of accuracy associated with these methods have long remained out of reach due to
a lack of shared validation datasets. Opportunities to compare performance on shared challenge
data will provide new insights toward effective common strategies that may be synthesized into
the next generation of novel registration algorithms.

At SPIE Medical Imaging 2019, Brewer et al. introduced the first image-to-physical liver
registration sparse data challenge4 to allow research groups to validate registration algorithms on
a shared dataset. This dataset is based on sparse intraoperative data collected from a tissue-
mimicking silicone liver phantom under multiple configurations of intraoperative deformation,
previously available at Ref. 5. The challenge data consisted of a preoperative liver mesh and 112
intraoperative data patterns sampled from four unique deformed intraoperative poses produced
by placing mock surgical packing beneath the posterior surface of the liver phantom. N ¼ 159

validation targets were distributed at blinded positions throughout the phantom to allow for an
unbiased comparison of ground truth target positions against predicted target positions estimated
by any proposed registration algorithm. Each of the 112 data patterns were mapped onto the
deformed intraoperative organ poses from real patterns of intraoperative data collected with
an optically tracked stylus over the visible patch of the anterior surface during clinical evaluation
of an image-guided liver surgery system.6,7 Since the release of the sparse data challenge in 2019,
a variety of methods including three rigid, two deep learning, and three biomechanically driven
nonrigid registration techniques have been contributed to the challenge. This paper presents
results comparing these registration approaches on the common validation dataset and offers
the first direct comparison study of sparse data registration accuracy in a phantom simulation
of image-guided liver surgery conditions. This paper reports full metrics for target registration
errors (TRE) that previously were blinded to participants in the sparse data challenge to ensure
impartiality. Furthermore, this work includes a detailed analysis of registration errors across
multiple sparse data registration methods on a large common set of scenarios of image-guided
navigation in the liver. Deformable registration methods are evaluated for sensitivity to data
coverage, variability across anatomical segments, the effect of measurement noise, differences
in initial alignment, and biomechanical consistency of the deformation field. Through these
analyses, common limitations and effective strategies are identified across a variety of proposed
methods to inform future algorithmic development in the domain of image-to-physical sparse
data registration algorithms. Finally, the full validation data, including the previously blinded
target positions and analysis techniques for the sparse data challenge, will be released hereafter
via the Open Science Framework at Ref. 8 as a continuing platform for algorithm characteri-
zation and benchmarking.

Heiselman et al.: The Image-to-Physical Liver Registration Sparse Data Challenge. . .

Journal of Medical Imaging 015001-2 Jan∕Feb 2024 • Vol. 11(1)



2 Methods

2.1 Sparse Data Challenge
The dataset associated with the image-to-physical liver registration sparse data challenge4 was
generated via a silicone liver phantom fabricated from a mixture of 80% Ecoflex 00-10 platinum-
cure silicone, 10% Silicone Thinner, and 10% Slacker Tactile Mutator (Smooth-On Inc.,
Macungie, Pennsylvania, United States) molded into a patient-specific 3D-printed cast of a
CT-segmented liver volume. A total of 159 stainless steel beads were implanted into the silicone
phantom as CT-visible validation targets. The liver phantom was removed from its cast, and
mock laparotomy pads were placed under the posterior face of the phantom to simulate four
different configurations of plausible intraoperative deformations. Repeat CT imaging was per-
formed to establish a baseline phantom configuration representing the undeformed preoperative
state and a series of four intraoperative deformation configurations from which the ground truth
liver geometry and positions of validation targets were segmented using ITK-SNAP (Kitware
Inc., Clifton Park, New York, United States). The 112 registration datasets were constructed
by mapping 28 unique sparse data patterns to each of the four deformation states via the data
transposition method in Ref. 9. Each sparse data pattern was acquired during a clinical study of
an image-guided liver surgery system approved by the institutional review board at Memorial
Sloan Kettering Cancer Center and with informed consent of all participants.6,7 The extent of data
coverage over the total surface area of the liver varied with each pattern from 20% to 44%, with
average extent of 31.7%� 6.4%. To simulate intraoperative instrumentation noise, 21 of 28 data
patterns (84 datasets) were mapped to the intraoperative liver geometry with sinusoidal noise of
2-mm amplitude, and the remaining 7 data patterns (28 datasets) were mapped to the intraoper-
ative liver surfaces without additional noise. Randomized rotations and translations were applied
to each dataset to ensure that the sparse intraoperative point clouds from each dataset were treated
independently. Random rotations were sampled uniformly in SO(3) via normalized axis-angle
parameters ei ∈ ½−1;1� for ei ∈ ê and θ ∈ ½0;2π�, whereas translations were randomly sampled
using a uniform distribution in the range ti ∈ ½−100;100� mm for ti ∈ t.

Figure 1 illustrates the structure of the sparse data challenge. Given the 112 sparse intra-
operative datasets and the initial preoperative liver volume in Fig. 1(a), the task of the challenge is
to perform a registration that most accurately predicts the deformed state of the whole organ
based on the limited information provided by each sparse data pattern. Registration results are
provided according to dense displacement fields [Fig. 1(b)] defined over the preoperative liver
volume. Displacements at the blinded validation target locations [Fig. 1(c)] are then interpolated
to determine the registration errors of the estimated target positions. The total variation in sparse

Fig. 1 Sparse data challenge registration task. (a) A reference mesh of the non-deformed preop-
erative liver is provided; it must be registered to 112 patterns of intraoperative sparse data that
were collected after one of four unknown deformations were applied to the organ. (b) The regis-
tration method generates dense displacement fields for mapping the preoperative liver to the intra-
operative data frame (rendered with rigid component removed). (c) Ground truth locations of 159
target locations distributed throughout the liver were previously blinded to participants and serve as
validation data. Registration performance was assessed via TRE, which was stratified across
variations in clinically relevant factors including measurement noise, data extent, target location,
and algorithm initialization. Furthermore, registration performance was compared according to
consistency measures of the displacement field, and inter-method similarity was assessed via
correlation analysis.
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data patterns across the 112 registration instances is depicted in Fig. 2. Additionally, the sparse
data challenge was structured to provide participants with the ability to inform algorithmic
development in a restricted manner. An incomplete set of ground truth data for 35 of 159 target
positions in 4 of the 112 datasets drawn from 2 of the 4 underlying deformation poses was pro-
vided to participants. Furthermore, a web portal was implemented using Amazon Web Services
(Amazon Web Services Inc., Seattle, Washington, United States) to allow participants to upload
in-progress and finalized registration results. These results were automatically processed to yield
coarse summary measures of average TRE across the full dataset and stratified across low,
medium, and high ranges of data extent. These results files were hosted on a publicly available
dashboard at Ref. 5 for the purposes of benchmarking and to offer a limited capability for hyper-
parameter characterization and algorithmic tuning among participants. The dataset and contrib-
uted results will continue to be available through the Open Science Framework at Ref. 8 upon
closure of the challenge site.

2.2 Evaluation
The primary endpoint of the sparse data challenge is the set of TRE associated with individual
registrations to the 112 unique intraoperative data patterns that comprise the dataset. Registration
errors of the 159 validation targets in each registration were measured according to

EQ-TARGET;temp:intralink-;e001;114;278TREi ¼ kxi;GT − xi;estk2; (1)

where xi;GT is the ground truth intraoperative position of target i and xi;est is the estimated position
of target i predicted by the registration. Average TRE (TRE) of each registration was computed as
the mean of TREi. Further, TRE among registrations to each of the 112 datasets were statistically
compared between registration methods via the Friedman test at a significance level of α ¼ 0.05

with Bonferroni correction applied to reported p-values to adjust for multiple comparisons.
Furthermore, the sensitivity of TRE to digitization noise was evaluated. The impact of digi-

tization noise was quantified through measures for noise efficiency EN and noise degradationDN

according to

EQ-TARGET;temp:intralink-;e002;114;156EN ¼ AN∕TREN; (2)

EQ-TARGET;temp:intralink-;e003;114;119DN ¼ ðTREN − TREN0Þ∕AN; (3)

for a noise level of AN ¼ 2 mm and average TRE of noisy and noise-free registrations TREN and
TREN0, respectively. The impact of digitization noise on the average value and variance of TRE
was assessed for each method using the Wilcoxon rank sum and Brown–Forsythe tests, respec-
tively, at a significance level of α ¼ 0.05.

Fig. 2 112 patterns of intraoperative surface data provided in the sparse data challenge to drive
the image-to-physical registration task. Each intraoperative sparse data pattern was clinically
collected during image-guided liver surgery and mapped to the deformed organ phantom. Points
associated with the anterior surface of the liver are shown in black, the falciform ligament in red,
the right inferior ridge in green, and the left inferior ridge in blue.
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TRE performance was also stratified by the effects of surface data coverage and target loca-
tion within the segmental anatomy of the liver. The extent of surface data coverage was defined
according to the method of Ref. 3, in which the data extent was computed as the percentage of
total organ surface area encompassed by an alpha shape fit to the sparse intraoperative point
cloud. Moreover, targets were stratified into the eight anatomical Couinaud segments to evaluate
the potential impact of clinical designation of lesion location on registration performance.
Anatomical segments S2 through S8 each contained 19 to 30 individual targets. The caudate
lobe (S1) was not evaluated for lack of a sufficient number of validation targets in this region
of the liver. Similarly, the effects of surface data coverage and target segment location on regis-
tration accuracy were assessed via the Friedman test with Bonferroni correction with significance
level α ¼ 0.05.

The impact of initial rigid pose on TRE was also compared among methods that had code
available to the authors. Sensitivities to initial alignment were assessed via two-sample
Kolmogorov–Smirnov tests at a significance level of α ¼ 0.05 to detect whether statistical dis-
tributions of TRE associated with the deformable registration methods differed under three con-
ditions of initial rigid alignment: (1) an optimal point-based rigid registration of ground truth
target positions, (2) an iterative closest point (ICP) rigid registration algorithm with manual
initialization and refinement, and (3) a fully automatic salient feature weighted ICP (wICP)
algorithm.

Displacement fields of the deformable registration algorithms were also analyzed for bio-
mechanical consistency by computing the norm of the rotation-invariant Green strain tensor kεk
and the Jacobian determinant jJj of the displacement fields applied to the liver in each registra-
tion, according to

EQ-TARGET;temp:intralink-;e004;117;459kεk ¼ 1

2
k∇uT þ ∇uþ ∇uT∇uk2; (4)

EQ-TARGET;temp:intralink-;e005;117;412jJj ¼ j∇uþ Ij; (5)

for each element displacement gradient tensor ∇u, where k · k2 is the L2 matrix norm, j · j is the
matrix determinant, and I is the identity matrix.

Finally, correlations among the resulting TREi of each method were compared in a Pearson
correlation plot to identify similarities in target error behaviors among registration methods.

3 Registration Comparators
Eight liver registration strategies were contributed and evaluated in the sparse data challenge.
Complete submissions were made to the sparse data challenge for each method by providing
displacement fields for registrations to all 112 sparse data patterns. These methods consisted
of the following techniques:

1. An optimal point-based rigid registration (PBR) between ground-truth preoperative and
intraoperative target positions as a common comparator to the best rigid alignment.

2. An ICP rigid registration with a manually established initial pose and manual reinitializa-
tion when necessary.10

3. A fully automatic salient feature wICP rigid registration (Clements).11

4. A deep learning method based on organ-data signed distance maps (Pfeiffer).12

5. A deep learning method based on probabilistic shape occupancy maps (Jia).13

6. A biomechanical finite element method based on linearized iterative boundary condition
reconstruction (Heiselman).14,15

7. A biomechanical finite element method based on adjoint boundary condition reconstruc-
tion (Mestdagh).16

8. A biomechanical reconstructive method based on analytical closed-form regularized
Kelvinlet solutions to point load perturbations (Ringel).17

Table 1 briefly summarizes the key features of these algorithms, which are described in
detail in Sec. 7.
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4 Results

4.1 Target Registration Errors
Registration results from one of the 112 sparse datasets are visualized in Fig. 3 for the rigid and
deformable registration comparators, with predicted and ground truth target positions displayed
alongside the intraoperative distribution of sparse data driving the registration. Figure 4 illustrates
the distribution of average TRE within registrations to each of the 112 datasets and summarizes
the overall mean, standard deviation, and median performance of each method. Among rigid
registration methods, the manually supervised ICP approach led to significantly lower average
TRE than the fully automatic salient feature wICP algorithm (p < 0.001), although both ICP
(p < 0.001) and wICP (p < 0.001) rigid alignments led to significantly worse average TRE than
the optimal PBR alignment of targets. With respect to the deformable registration methods,
although the biomechanical boundary condition reconstruction methods of Heiselman and
Mestdagh did not significantly differ from each other (p > 0.99), the method of Heiselman pro-
vided registrations with significantly lower TRE than the optimal point-based rigid registration
of targets (p ¼ 0.048), whereas the method of Mestdagh did not significantly improve over
the optimal PBR (p ¼ 0.81). The deep learning method by Jia was not found to produce TRE
higher than either the optimal point-based registration (p ¼ 0.37) or Mestdagh (p ¼ 0.09),
but significantly worse performance was detected compared to Heiselman (p < 0.001).
Meanwhile, the biomechanical method by Ringel produced average TRE that did not signifi-
cantly differ from Jia (p ¼ 0.10) or the ICP method (p ¼ 0.39), and the deep learning method
by Pfeiffer was significantly less accurate than ICP (p ¼ 0.011) but not wICP (p ¼ 0.93).

Fig. 3 Registration results from the sparse data challenge corresponding to one of the 112 regis-
tration scenarios. The top center panel shows the intraoperative ground truth target positions (red)
and deformed liver shape (gray), alongside the intraoperative sparse surface data pattern provided
for the registration task (black). In all other panels, the resulting target positions predicted by
each registration method (blue) are compared against the ground truth target positions (red).
The deformed liver shape predicted by each registration method is also shown in gray.
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All other pairs of registration methods were found to produce significantly different levels of
average TRE (all p < 0.01).

4.2 Effect of Surface Data Coverage
The 112 sparse intraoperative datasets were stratified according to the extent of surface data
coverage as a percentage of the total liver surface area. Of the 112 registration sets, 35 cases
were associated with surface coverage between 20–28% extent, 42 cases between 28–36%
extent, and 35 cases between 36–44% extent. Figure 5 plots the average TRE of each registration
according to the extent of sparse surface data coverage provided over the liver. Across all regis-
tration methods, registration performance did not significantly differ as a function of surface data
extent (p ¼ 0.88). With respect to the rigid registration algorithms, ICP with manual initializa-
tion and refinement achieved average TRE values closer to the optimal rigid registration than
the wICP algorithm over the full range of data extent (p < 0.001), which suggests that additional
bias introduced by wICP feature weighting may lead to suboptimal rigid alignments despite its

Fig. 4 Distributions of average TRE of each of the 112 registration instances in the sparse data
challenge. Mean and standard deviation are plotted with red bars. Quantitative measures are
reported as mean ± standard deviation (median) in units of mm.

Fig. 5 Mean TRE of rigid registration methods (a) and deformable registration methods (b) com-
pared against the extent of sparse surface data coverage on the liver. Solid lines indicate moving
average.

Heiselman et al.: The Image-to-Physical Liver Registration Sparse Data Challenge. . .

Journal of Medical Imaging 015001-8 Jan∕Feb 2024 • Vol. 11(1)



excellent practical utility in intraoperative workflows. In comparison with the deformable
registration algorithms, Fig. 5 qualitatively shows that the finite element-based biomechanical
methods 1 and 2 (Heiselman12 and Mestdagh14) outperform or achieve similar performance to
the optimal point-based rigid registration, whereas the deep learning methods are associated
with the highest errors among the deformable registration methods. These trends mirror the
significance patterns reported in the previous section. The regularized Kelvinlet method
(Ringel15) performed similarly to the deep learning method by Jia that incorporates a biome-
chanical simulation workflow, with slightly improved qualitative stability across extent ranges.
Both the methods of Ringel and Jia offered significant improvements over wICP-based rigid
registration (p < 0.001) but failed to outperform the globally optimal rigid point-based registra-
tion. The relative stability of average TRE across the low to high extent ranges is consistent with
the work of Refs. 3 and 18, which showed that rigid and nonrigid registration methods tend to
reach an error floor plateau beyond extent ranges of ∼20%. Yet, it should be noted that the deep
learning approaches seem to exhibit less consistency in their performance across variations in
surface data coverage.

4.3 Effect of Target Location
Validation targets were partitioned into their associated Couinaud segments of the liver to
evaluate variations in accuracy contingent on clinical designations of possible target locations.
Figure 6 shows the segments identified on the liver mesh and the distribution of distances from
each target to the nearest sparse data point in each registration scenario. Columns S2 through S8
in Table 2 summarize the TRE performances of each registration algorithm across the associated
anatomical segments. Across all registration methods, TRE significantly varied depending on
the anatomical location of the target (p < 0.001). TRE of the deformable registration methods
were found to be highest in the most peripheral segments of the liver (S2, S6, and S7)
where the informational influence of sparse data tended to be weakest. Compared with S5,
significantly higher TRE values were observed across registration methods in S2 (p ¼ 0.017),
S6 (p ¼ 0.002), and S7 (p ¼ 0.004), whereas S6 was also found to produce significantly higher
TRE than S4 (p ¼ 0.025). Intraoperatively, it should be noted that it is often not possible to
collect point cloud data on the surface of S7 due to the dome of the right lobe of the liver
obstructing line of sight and direct access to this area of the liver. Comparing the performance
of each method across the segmental anatomy, the deep learning method of Jia and the regu-
larized Kelvinlet method of Ringel exhibited highest TRE values in S7, which was the anatomi-
cal segment on average farthest away from the sparse data included in the dataset, whereas the

Fig. 6 Distribution of closest-point distances from each validation target position to the intraoper-
ative data points that are provided to drive the registration. Inset illustrates anatomical Couinaud
segments marked on the sparse data challenge liver mesh.
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deep learning method of Pfeiffer produced the least accurate inference of deformations in S2 and
S6. The finite element-based biomechanical registration methods of Heiselman and Mestdagh
achieved the most consistent performance across segments, although they exhibited highest
errors in S6 and S7. When adjusting registration performance for the effect of target location,
the only deformable registration methods to show significant improvement over ICP or wICP in
all segments were those of Heiselman (p ¼ 0.044 and 0.002, respectively) and Mestdagh
(p ¼ 0.063 [N.S] and 0.002, respectively), whereas all other comparisons among methods did
not approach statistical significance after correction for multiple comparisons (p > 0.13). These
behaviors highlight the need to control uncertainties in anatomical regions that are distant from
data and illuminate the benefit of biomechanical models for stabilizing performance in deform-
able registration algorithms. This consideration may become especially pertinent for deep learn-
ing approaches considering their tendency to develop extrapolative fragility when making
inferences beyond the span of their training data.

4.4 Sensitivity to Measurement Noise
Varying levels of measurement noise are often involved in image-to-physical registrations due to
differences in data collection strategies, which may involve user variability, contact or non-con-
tact intraoperative organ digitization techniques, or non-standardized depth reconstruction and
tool localization algorithms. Measurement noise was simulated within the sparse data challenge
via 84 registration datasets generated with added noise and 28 generated without noise to char-
acterize algorithmic sensitivity to input noise sources. Figure 7 and Table 3 convey the influence
of noise on average TRE of each method. The rigid registration and deep learning methods were
not significantly affected by differences in input noise (all p > 0.14), whereas the biomechanical
methods were associated with a significant increase in mean TRE (all p < 0.001). TRE variances
of the finite element-based biomechanical methods also significantly increased under conditions
of elevated measurement noise (largest p ¼ 0.003). Although the deep learning and rigid regis-
tration methods were less sensitive to added noise, only the biomechanical methods achieved
registrations with high efficiency scores indicating TRE magnitudes on par with the relatively
small noise level under investigation. Considering the modest noise magnitude, statistical

Fig. 7 Spider plot of average TRE for noise-free registrations (blue) and registrations with added
measurement noise (red). Plot shows the mean value as a solid line surrounded by a shaded
region of one standard deviation.
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analyses on the degradative effects of noise may be shrouded by the elevated level of baseline
error and error variances associated with several of the other methods under investigation. Of
the methods evaluated herein, only the finite element-based biomechanical boundary condition
reconstruction methods were able to achieve high noise efficiency and small error variances
under the 2-mm measurement noise condition.

4.5 Sensitivity to Initial Alignment
All deformable registration methods with codes that were made available to the authors were
further analyzed to characterize the susceptibility to differences in the choice of rigid pose that
initializes the algorithm. The methods of Pfeiffer, Heiselman, and Ringel were included toward
this objective. The optimal PBR, ICP, and wICP rigid alignment methods were chosen as ini-
tialization comparators for each of the three deformable registration methods, and the resulting
distributions of average TRE across the 112 registrations are compared in Fig. 8. The finite

Table 3 TRE performance in noise-free and noise-afflicted sparse registration datasets, reported
as mean ± standard deviation.

Average TRE (mm) Noise = 0 mm Noise = 2 mm Efficiency Degradation Average Variance

Optimal rigid registration 3.77 ± 0.86 3.77 ± 0.86 0.56 ± 0.13 0.00 ± 0.43 p ¼ 0.91 p > 0.99

Manually initialized ICP 5.34 ± 1.72 5.59 ± 1.61 0.39 ± 0.12 0.13 ± 0.82 p ¼ 0.43 p ¼ 0.91

Salient feature weighted ICP
(Clements)11

8.06 ± 1.46 7.62 ± 1.81 0.28 ± 0.06 -0.22 ± 0.87 p ¼ 0.14 p ¼ 0.64

Deep learning method 1
(Pfeiffer)12

7.70 ± 6.43 7.51 ± 4.88 0.32 ± 0.11 -0.10 ± 2.65 p ¼ 0.27 p ¼ 0.61

Deep learning method 2
(Jia)13

3.89 ± 0.93 4.42 ± 2.15 0.51 ± 0.15 0.27 ± 0.96 p ¼ 0.16 p ¼ 0.26

Biomechanical method 1
(Heiselman)14,15

2.50 ± 0.31 3.34 ± 0.87 0.64 ± 0.15 0.42 ± 0.38 p < 0.001 p < 0.001

Biomechanical method 2
(Mestdagh)16

2.56 ± 0.50 3.56 ± 0.92 0.60 ± 0.16 0.50 ± 0.42 p < 0.001 p ¼ 0.003

Biomechanical method 3
(Ringel)17

4.02 ± 0.79 4.80 ± 0.92 0.43 ± 0.08 0.39 ± 0.44 p < 0.001 p ¼ 0.44

Statistically significant findings are bolded.

Fig. 8 Distribution of 112 average TRE values after deformable registration starting from varying
the initial pose (Optimal PBR, Manual ICP, and wICP) plotted for the biomechanical method of
Heiselman (red), biomechanical method of Ringel (green), and deep learning method of Pfeiffer
(blue).
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element-based biomechanical strategy was robust to the initial pose, and the distributions of
average TRE did not significantly shift across initialization strategies (p > 0.18). However, the
regularized Kelvinlet-based biomechanical strategy expressed significant differences in TRE
distribution under different initial pose configurations (p < 0.001), although the differences in
magnitude shifted by <2 mm. The deep learning method of Pfeiffer exhibited the largest
differences in average TRE when varying the initial rigid alignment strategy (p < 10−5).

4.6 Field Consistency
A biomechanical analysis of displacement fields from each method was performed to analyze
constitutive regularity and yield deeper insights toward current algorithmic limitations. The strain
norm and Jacobian determinant of displacements on each element were averaged across the 112
displacement fields and are rendered in Fig. 9 for each deformable registration method through a
cross-section of the liver. The strain norm plots indicate the locality of where each registration
method expects forces to be applied over the liver, and the Jacobian determinant, which measures
local volume change and is expected to equal unity for nearly incompressible soft tissue, reveals
additional field inconsistencies across registration methods. Given that the underlying deforma-
tions applied to the liver phantom consisted of mock laparotomy pads placed under the posterior
surface of the liver, the distribution of strain is expected to be primarily distributed along the
posterior surface of the liver. Given the absence of non-gravitational constitutive body forces
and free exposure of the anterior surface, the remainder of the liver in this phantom experiment
is expected to associate with low strain. Briefly, the finite element-based biomechanical methods
demonstrate the closest results to the expected distribution of force deposition on the liver,
whereas the regularized Kelvinlet method (Ringel15) offers the most concordant distribution
of Jacobian determinants. Overall, each method produces distinct deformation field character-
istics that are impacted by several modeling decisions and algorithmic choices, which are out-
lined in Sec. 7 and discussed in Sec. 5.

4.7 Correlation Analysis
Finally, Pearson correlation between individual TREi samples for each combinatorial pair of
methods are plotted in Fig. 10. This correlation plot reveals that target error magnitudes within
and across rigid registration and deformable registration methods are in general poorly correlated
with each other, with few Pearson correlation coefficients exceeding 0.5. Notably, the deep learn-
ing method of Pfeiffer is uncorrelated with the other biomechanically informed deformable regis-
tration algorithms, with correlation coefficients below 0.16. Similarly, the deep learning method
of Jia is weakly correlated, with correlation coefficients below 0.37. Across all registration meth-
ods, the strongest correlations are achieved between manually supervised ICP and optimal PBR
rigid registrations, and among the three biomechanical boundary condition reconstruction algo-
rithms. Interestingly, the regularized Kelvinlet method of Ringel showed a high correlation with
the rigid wICP method of Clements that served as the initial alignment for this method, sug-
gesting that the regularized Kelvinlet approach could be more conservative in preserving the
initial pose or could exhibit stiffening effects when performing deformable registration. The
overarching lack of strong correlation implies that the specific algorithm choice is profoundly
important with respect to the particular way targeting inaccuracies may manifest in prospective
guidance applications, since a target location predicted by one algorithm may be only weakly
related or even uncorrelated with the same target location predicted by a variant algorithm.
Although certain families of registration methods may exhibit greater similarity, it is therefore
important for multiple registration algorithms to be compared for performance when proposing
new prospective applications for image guidance under sparse data-driven deforming environ-
ments. This finding also justifies potential investigation into decision fusion methods to
identify consensus registrations that combine results from multiple methods. It is interesting
to note that averaging the displacement fields between the two finite element deformable regis-
tration methods improves average TRE from individual baselines of 3.08� 0.85 mm and 3.31�
0.94 mm for the methods of Heiselman and Mestdagh, respectively, to merely 2.93� 0.75 mm

across the sparse data challenge (p < 0.001, paired t-test).
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Fig. 9 (a) Norm of the rotation-invariant Green strain tensor computed from displacement
fields of the deformable registration methods. (b) Jacobian determinant of displacement fields.
(c) Distribution of Jacobian determinants evaluated at all validation target locations in the set of
sparse data challenge registrations.
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5 Discussion
Results from the sparse data challenge reveal variabilities in the effectiveness of registration
strategies evaluated on a common dataset. It should be noted that all deformable registration
methods utilized biomechanical deformation models to different degrees, whether through direct
finite element simulation or reinforced through training in deep learning approaches. This dataset
consisted of small to moderate deformation magnitudes with maximum target displacements of
11.9� 3.7 (max 15.5) mm across deformation states after factoring out rigid motion, which is
consistent with clinically observed deformation magnitudes for open liver surgery reported in
Ref. 19. These modest deformation magnitudes suggest that the linear elastic approaches pursued
by many of the participating deformable registration methods are adequately suited to the con-
ditions associated with the sparse data challenge. Importantly, data sparsity is a considerable
barrier to driving intricate models with high degrees of freedom. Biomechanical simulation offers
an opportunity to incorporate underlying structure to the registration problem and restore algo-
rithm performance under scarce informational constraints.

Target error performance of rigid registration is also revealed to be of great importance, with
results showing that ICP and wICP algorithms lead to significant differences in rigid alignment
and TRE. These findings suggest that determining an optimal rigid alignment from sparse surface
data in the presence of underlying deformation is a non-trivial problem when the accuracy of
subsurface targets is a primary concern. Due to violation of the rigid body assumption, particular
attention toward the extrapolative performance of surface-based ICP registrations is needed
when these approaches are applied to soft tissue organs. Moreover, Fig. 8 indicates that deform-
able registration algorithms may express different levels of sensitivity to variations in the initial
rigid alignment. It should be noted that three of the five deformable registration methods
(Heiselman,14,15 Jia,13 and Ringel17) take additional precautions to concurrently re-optimize rigid
pose parameters during deformable registration. Considering best practices, it may be worthwhile
to operate under an assumption that surface-based rigid alignments are fundamentally unreliable
in the presence of soft tissue deformation. Nonetheless, the low error associated with the optimal
PBR may suggest that, in some situations, a locally rigid approach may be appropriate if a
sufficient number of landmarks in close proximity to a target of interest could be measured.
However, accurately localized landmark data can be burdensome to collect intraoperatively.
Furthermore, the findings in Table 2 suggest that the segmental location of a target of interest
in the liver can profoundly affect its registration accuracy. Some biomechanical deformable

Fig. 10 Correlation matrix of TRE among rigid registrations (blue outline) and deformable regis-
trations (green outline). Biomechanical deformable registrations are emphasized by a dashed
green outline.
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registration algorithms, especially those configured to match anatomically pertinent boundary
conditions, can obtain comparable or better registration errors than the most optimal point-based
rigid registration while only using sparse point clouds of the intraoperative organ surface.

With respect to commonalities among methods, the two finite element-based deformable
registration methods (Heiselman14,15 and Mestdagh16) made use of the fact that physical defor-
mation was applied only to the posterior surface of the liver phantom. This a priori knowledge
can be leveraged to reduce the complexity of the problem space and potentially improve the
conditioning between latent model parameters and data constraints in optimization-based
registration methods. In Heiselman and Mestdagh, this knowledge was incorporated into the
registration by taking advantage of natural stress-free boundary conditions inherent to the finite
element method and eliminating reconstructive degrees of freedom over the anterior surface,
which is expected to remain stress-free. Notably, neither the deep learning methods nor the regu-
larized Kelvinlet method incorporated similar a priori information, which is likely a distinguish-
ing factor separating the performance of these deformable registration methods. It should be
remarked that the regularized Kelvinlet method assumes the organ to be embedded in an infinite
elastic medium that more naturally represents zero-displacement boundary conditions than
stress-free conditions wherever degrees of freedom are removed from the reconstructive frame-
work. Additional characterization detailed in Ref. 17 showed that the performance of the regu-
larized Kelvinlet registration method on the sparse data challenge dataset was optimized when
boundary condition reconstruction was performed over the full organ surface, unlike the behavior
of finite element simulations, which benefitted from eliminating reconstructive degrees of
freedom over stress-free regions. Overall, the biomechanical boundary reconstruction methods
demonstrated excellent performance, and the methodologically succinct representations of
anticipated boundary conditions most accurately reflecting the underlying anatomy, physiology,
and clinical task seemed to offer the most success for accurately predicting motions of deforming
targets from sparse intraoperative surface data. Incorporating these insights into boundary con-
dition generation will likely remain important for training future deep learning approaches that
attempt to conform to the underlying biomechanics and extrapolate soft tissue behaviors from
the intraoperative locale of available data into more distant regions.

Figure 9 also illuminates how algorithmic differences and design choices may affect devia-
tions in predicted target displacements among methods. In Fig. 9(a), the approach of Heiselman
exhibits strain artifacts on the posterior surface that likely arise from the biomechanical simu-
lation of superposed point load displacements generating numerically induced stress concentra-
tions associated with this formulation of boundary conditions. The method by Mestdagh offers
a smoother strain field, although it concentrates strain disproportionately around the portal vein
entry point due to the numerical need for a fixed displacement constraint in the force-based
reconstruction implemented in this approach. The deep learning method of Pfeiffer is associated
with an inconsistent strain field that exhibits voxelization artifacts likely associated with data
discretization procedures at input and output layers of the convolutional neural network (CNN),
which is in stark contrast to the deep learning method of Jia that performs a biomechanical sim-
ulation guided by a learned point-convolutional shape occupancy objective function. Although
the method of Jia produces approximately uniform strain, completely uniform strain distributions
are inaccurate to the expected underlying biomechanics of elastic soft tissue deformation. The
strain deposition of Heiselman and Mestdagh most closely represent the method by which the
liver phantom was physically deformed with mock laparotomy pads placed under the posterior
surface of the liver in an open surgery configuration. These contact forces are expected to cause
the highest concentration of strain on the posterior surface of the liver. Notably, the strain
deposition of the Ringel method reveals an effective force distribution applied to the anterior
surface of the liver, which is less realistic to the underlying organ deformation but is likely
required to compensate for the infinite elastic medium assumption of this method along a
stress-free boundary.

The Jacobian determinants in Fig. 9(b) reveal that the deep learning method by Pfeiffer
produces volumetric deviations of up to 10%. These large deviations likely arise due to the voxe-
lization procedure and high training loss of this method. It should be noted that the training
procedure of this method on simulated biomechanical data converged to an error of 6 mm,12

which likely limits the overall ability of the network to accurately represent biomechanically
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consistent fine structures within displacement fields. By contrast, the deep learning method by
Jia displays more uniform Jacobian determinants likely attributable to the use of an underlying
biomechanical model and inclusion of strain energy regularization within the objective function.
In fact, strain energy regularization was utilized in each of the contributed deformable registra-
tion methods except for those of Pfeiffer and Mestdagh. Strain energy regularization will likely
continue to be an effective strategy for controlling field irregularities associated with deformable
registration algorithms.

In Fig. 9(b), the biomechanical registration algorithms all display approximately uniform
Jacobian determinants, although the finite element-based methods tended to develop volumetric
dilation within the thinner ridges of the liver. These volumetric distortions likely arise due to the
use of linear elastic material simulation from a rigidly registered initial pose coordinate, wherein
rotational components of finite element displacements relative to this coordinate frame will cause
local dilatation due to rotation dependence of the linearized strain tensor. It should be noted that
this dilatational effect can be abated by a technique used in Heiselman, Jia, and Ringel, wherein
rigid transformation parameters are optimized concurrently with deformation parameters along-
side strain energy regularization to redistribute local rotational effects globally throughout the
mesh. It is noteworthy that the regularized Kelvinlet method of Ringel is unique among methods
for its remarkable consistency with respect to the Jacobian determinant measure. This consis-
tency is made possible due to the closed-form analytic nature of its deformation basis circum-
venting errors associated with numerical finite element simulation of linear elasticity. Finally, it
needs to be emphasized that although the methods of Jia, Heiselman, and Mestdagh were based
on numerical linear elastic simulation, the trained deformation responses in Pfeiffer instead were
based on numerical simulation of a hyperelastic material. In Fig. 9(c), these choices in the under-
lying deformation model likely influence the relative symmetry of the Jacobian determinant
around unity in Pfeiffer and Ringel as compared with the upward bias influenced by element
dilatation evident in the other registration methods that employ linear elastic numerical simulation.

With respect to the behavior of TRE among methods, quantitative differences in Table 2
would suggest that the algorithmic choices discussed above have profound consequences on
the final accuracy of registrations between a soft tissue organ and sparse point cloud data rep-
resenting its deformed state. These differences are also reflected in the low correlation of target
errors in Fig. 10 and visual differences in predicted organ shapes in Fig. 3. Registration errors
may crucially depend on the locations where errors are measured in combination with the loca-
tions where forces are imparted on the organ. Consequently, intraoperative data localization,
algorithm initialization, and determination of where forces may act upon the organ are remark-
ably important to the task of image-to-physical deformable registration. With respect to the bio-
mechanical model-based registration algorithms, the fidelity of boundary condition composition
likely played a substantial role in separating the performance of Heiselman and Mestdagh from
the other deformable registration methods. Comparing against the biomechanical method of
Ringel suggests that although a biomechanical deformation basis offers a useful structure for
constraining the registration problem, the specific tuning of boundary condition designation for
relevant anatomical and physiological factors appears to be critical for optimizing registration
performance. The ability to train a generalizable expectation for task-specific anatomical motions
will likely be a major next step for similarly improving the accuracy of deep learning registration
algorithms driven by sparse intraoperative data.

Regarding the plateau behavior of TRE within the 20–40% extent range of data,
we note in the general case that registration algorithms are often ill-posed, which results from
underspecification of model parameters relative to the model constraints. Although an ordinary
approach for resolving this indeterminacy would revolve around incorporating additional
a posteriori measurement data, information located beyond the visible anterior surface would
be necessary to more thoroughly inform unknown boundary conditions applied to regions where
registration constraints are missing. Another potential approach to overcoming this performance
plateau involves incorporating a priori domain knowledge such as biomechanical expectation of
boundary conditions, large sets of training data, or other forms of regularization to impose bias
on the registration model and its parameters. One exciting direction pursued by Jia attempts to
alter the efficiency with which the data constraints inform the registration model using a learned
objective function to optimize the extraction of model parameters from sparse data. However,
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all techniques that rely on strong a priori knowledge may ultimately impair generalizability.
It is therefore necessary for registration algorithms to be explicitly tested for generalization
performance through experimentation with unseen data or prospective validation studies that
match the intended use case.

The sparse data challenge also highlights the need to design studies that consider environ-
mental factors such as the impact of measurement noise on registration performance, which has
long remained underappreciated. Although rigid registrations appear to be relatively robust to
measurement noise, deformable registration methods tend to be more susceptible. Particular care
should be taken during algorithmic development and evaluation to quantitate or otherwise control
elevations in error magnitudes and error variances that may occur due to changes in the level of
input noise. This consideration will likely become even more important when training and
validating deep learning approaches within medical image registration workflows as these algo-
rithms continue to mature.

The main limitations of the sparse data challenge include the simulation of measurement
noise at only two noise amplitudes, restriction to a single baseline liver geometry, inclusion of
only four distinct deformation states with modest deformations, and dependence on a synthetic
silicone liver phantom over clinically obtained human validation data. In addition, the challenge
does not provide subsurface data constraints to further inform registration beyond the provided
sparse surface data patterns, and computational time requirements of each method were not
part of the data collection process. Nonetheless, this challenge offers a detailed look into the
performance of current state-of-the-art rigid and nonrigid sparse data registration algorithms for
liver interventions and offers comparative insights into common and unique algorithmic traits
that will continue to inform the next generation of image-to-physical sparse data registration
algorithms.

6 Conclusion
Results were presented for the first Image-to-Physical Liver Registration Sparse Data Challenge
that evaluated and compared eight distinct rigid and deformable registration approaches with
respect to registration accuracy under varying conditions of data coverage, target location,
and measurement noise. In addition, sensitivity to algorithm initialization, displacement field
consistency, and inter-registration similarity were explored. The overarching findings showed
that biomechanical deformation bases tend to achieve the best registration accuracy and field
consistency among state-of-the-art methods for sparse data-driven deformable image registration.
Furthermore, only the family of biomechanical boundary condition reconstruction deformable
registration algorithms outperformed the best achievable rigid registration when they incorpo-
rated task-specific insight into boundary condition composition. The results of this challenge
suggest that specific implementation choices profoundly affect the TRE that develop from regis-
tration algorithms and their estimated displacement fields.

7 Appendix A: Contributed Methods

7.1 Optimal Point-Based Rigid Registration
The first registration strategy is a common comparator representing an optimal PBR between the
ground-truth preoperative and intraoperative positions of all 159 validation targets. A singular
value decomposition approach was utilized to find the rigid transformation that minimizes
the sum of squared TRE within each registration instance. Although this method incorporates
unobtainable information about the true intraoperative target positions and therefore is not
achievable in practice, errors associated with this globally optimal rigid registration represent
a useful benchmark against which to gauge competing methods.

7.2 Manually Initialized Iterative Closest Point Rigid Registration
The second registration strategy is an ICP rigid registration algorithm10 initialized from a man-
ually designated initial pose estimate. The ICP algorithm repeatedly updates a rigid transforma-
tion between the sparse data and their closest points on the preoperative organ model using a
point-based rigid registration on each iteration. Naïve ICP algorithms are highly susceptible to
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local minima, and therefore the resulting rigid alignments were visually verified and re-initialized
from new starting poses when any instance was deemed unsatisfactory.

7.3 Salient Feature Weighted Iterative Closest Point Rigid Registration
(Clements)

To overcome the need for manual interaction in the rigid registration process, the third strategy
evaluated a fully automatic salient feature wICP algorithm.11 This method biases point corre-
spondences according to preoperatively annotated anatomical feature patches to improve intra-
operative robustness of the ICP algorithm. This technique utilizes a weighted point-based
registration of sparse feature points to corresponding patches on the preoperative organ surface,
with weight functions controlled over an exponentially decaying iteration schedule. Although
demonstrated to be more robust than naïve ICP, wICP may incorporate additional bias toward
preferentially aligning the specified feature information as opposed to the overall fit of the intra-
operative point cloud. The salient features included the falciform ligament and left and right
inferior ridges of the liver, which are explicitly marked in the sparse data challenge intraoperative
point cloud patterns in Fig. 2.

7.4 Deep Learning Method 1: Signed Distance Map CNN (Pfeiffer)
The fourth method is a deep learning deformable registration strategy (V2SNet12) based on a
CNN trained on voxelized distance maps computed between a preoperative organ mesh and
a partial data patch of the deformed intraoperative organ surface. Briefly, after an initial rigid
registration is applied to align intraoperative data with the mesh, the network estimates a function
FðSDFP;DFIÞ ∼ u, where SDFP is the voxelized signed distance map of the preoperative organ
mesh, DFI is the voxelized unsigned distance map of the partial intraoperative surface to the
preoperative mesh, and u is the estimated displacement field of the deformation. Training data
for this method were generated from random organ mesh shapes on which random deformations
with known ground truth were simulated using a hyperelastic biomechanical model. The neural
network was trained in a multiresolution supervised manner according to a mean absolute error
loss function:

EQ-TARGET;temp:intralink-;e006;117;388L ¼
X

r∈f8;16;32;64g

wr

r3
Xr3
i¼1

jur;GTðiÞ − ur;estðiÞj; (6)

where ur;GT is the ground truth voxel displacement; ur;est is the estimated voxel displacement;
r is the resolution of the voxelized image; and wr is a resolution-dependent training weight
hyperparameter. The authors report that training data converged to mean error of ∼6 mm.12

Pretrained network weights at the maximum resolution were used without retraining for infer-
ence of the liver model and intraoperative data associated with the sparse data challenge, using
initial ICP rigid registration alignments from Sec. 7.2.

7.5 Deep Learning Method 2: Probabilistic Occupancy Map PCNN (Jia)
The fifth registration strategy is a data-driven nonrigid approach13 based on a learned occupancy
map and point convolutional neural network (PCNN) to predict the likelihood that a particular
volumetric shape takes a certain configuration based on a sparse input point cloud. The authors
propose a deep neural network to model a differentiable occupancy map gðxi; PÞ ∈ ½0;1�∶R3 → R
for the probability that a shape occupies position xi given a point cloud P that describes a sparse
representation of the shape surface. The occupancy map g then represents a fuzzy boundary of the
liver over the spatial support of x, and an isocontour of g represents an estimated organ shape.
Agreement between the occupancy of a deforming preoperative liver model and a rigidly registered
intraoperative point cloud is then optimized alongside a strain energy penalty to determine a set of
rigid and nonrigid deformation parameters fϕ; t; θg according to the following objective function:

EQ-TARGET;temp:intralink-;e007;117;126Cðϕ; t; θÞ ¼ 1

N

XN
i¼1

½gðfðxijϕ; t; θÞ; PÞ − 0.5�2 þ αEðϕÞ; (7)

where fðxijϕ; t; θÞ is a transformation function that applies a deformation field parameterized by ϕ
and rigid translations and rotations t and θ. In this work, the authors define fðxijϕ; t; θÞ according
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to a superposed finite element deformation basis introduced in Ref. 3. The penalty term αEðϕÞ
represents regularization by the strain energy EðϕÞ in the manner of Rucker et al.20 More infor-
mation and details about this method are provided in Ref. 13. Unlike the end-to-end deep learning
method in Sec. 7.4, which attempts to learn a deep deformation basis to alleviate the need for
intraoperative biomechanical simulation, this deep learning approach incorporates biomechanical
simulation to establish a network-based filter for model-data correspondence errors. Compared
with conventional simulation approaches that assume a model-data correspondence function and
minimize the error between the set of observed data points and their corresponding locations on the
deforming organ model, this technique explores an interesting framework for learned objective
functions that alternatively encode preoperative-to-intraoperative correspondences through prob-
abilistic model occupancy, which may offer new approaches to offset deleterious effects of
measurement noise and uncertainty associated with anatomical correspondences in image-to-
physical registration to sparse point cloud data. A unique feature of the PCNN model is that data
voxelization is not required because the occupancy function can be sampled continuously through
space at any point of interest.

7.6 Biomechanical Method 1: Linearized Iterative Boundary Reconstruction
(Heiselman)

The sixth registration strategy is a linearized iterative boundary reconstruction method14,15 that
uses a biomechanical finite element model of the organ to control nonrigid deformation. The
method reconstructs a set of boundary conditions applied to a mesh of the preoperative organ
that best explains the intraoperative deformation state observed in sparse data measurements of
the organ surface. This technique decomposes the mechanical load applied to the boundary of
the organ into a set of localized point forces distributed over the active contact surfaces of the
organ. These local point forces are superposed to allow for rapid estimation of the deformation
state from a precomputed basis of perturbation responses obtained from a linear elastic finite
element model. An intraoperative deformation state is obtained by iteratively optimizing the
following weighted least squares objective function:

EQ-TARGET;temp:intralink-;e008;114;400Cðα; t; θÞ ¼
X
F

wF

NF

XNF

i¼1

f2i þ wEf2E (8)

where fi ¼ fiðα; t; θÞ is the Euclidean model-data error associated with the sparse data point i in
feature F and the penalty term fE ¼ fEðαÞ is the strain energy of the deformation state for the
vector of deformation basis weights α. The relative contributions of error terms and consequently
the deformability of the registration is controlled by the ratio of the weight factors wF and wE.
A total of 20 control points were distributed across the posterior surface of the liver to match
the loading configuration applied to the organ in this dataset. The method is initialized with
rigid transformation parameters determined by the wICP algorithm in Sec. 7.3 to establish
an automatic and robust starting alignment after which the rigid and nonrigid parameters are
simultaneously optimized in a Levenberg–Marquardt framework.

7.7 Biomechanical Method 2: Adjoint Boundary Reconstruction (Mestdagh)
The seventh registration strategy is a biomechanical method using a linear elastic finite element
model within an adjoint optimization scheme that solves for boundary forces applied to the
posterior surface of the liver mesh.16 First, an ICP rigid registration algorithm is applied prior
to initiating the deformable registration. Then, an adjoint method is developed to iteratively
minimize the least squares objective function:

EQ-TARGET;temp:intralink-;e009;114;166CðbÞ ¼ 1

2N

XN
i¼1

kpðyijubÞ − yik2; (9)

for nodal boundary forces b with associated displacement field ub and adjoint state pðyijubÞ for
an observed sparse data point yi. To numerically solve the system of equations, displacements
over a small patch on the posterior face of the liver near the portal vein insertion point are fixed to
zero-displacement Dirichlet boundary conditions. In contrast to the displacement-driven linear-
ized method in Sec. 7.6, this method utilizes a force-based reconstruction over an iteratively
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updating forward model solution process. This method may be extended to hyperelastic and
other nonlinear deformation models, although more sophisticated deformation models may incur
potentially prohibitive costs to computation time. Notably, due to the adjoint approach, this linear
elastic model does not concurrently optimize rigid transformation parameters.

7.8 Biomechanical Method 3: Regularized Kelvinlet Boundary Reconstruction
(Ringel)

The eighth registration strategy builds upon the linearized iterative boundary reconstruction
approach of Sec. 7.6 and similarly decomposes the mechanical load applied to the organ into
a series of localized control point responses. However, this method replaces the finite element
simulations with closed-form displacement equations associated with Kelvin state solutions
established in formal elastic theory. The Kelvin state analytically models the linear elastic
displacement response of a point load perturbation embedded within an infinite linear elastic
domain. These point load responses can be superposed to establish a deformation basis consist-
ing of a series of spatially localized Kelvinlet deformations that are distributed across the
boundary of the organ. A regularization approach is incorporated to extend the analytic Kelvin
response from a point load impulse to a spatially localized smoothed force density function. The
regularized Kelvinlet displacement solutions are analytic algebraic equations that remove the
need for computationally expensive finite element simulation and greatly accelerate realistic bio-
mechanical simulation by leveraging classical solution methods to 3D linear elasticity. The regu-
larized Kelvinlet displacement solution uε to a local force perturbation is defined as

EQ-TARGET;temp:intralink-;e010;117;484uεðrÞ ¼
�
a − b
rε

I þ b
r3ε

rrT þ aε2

2r3ε
I

�
f0; (10)

where f0 is the force magnitude applied to the Kelvinlet center point, r is the radial distance from

the Kelvinlet center to any position in the 3D spatial support, rε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ε2

p
is a regularized radius

incorporating a radial scale ε, and a and b are material constants that depend on elastic modulus
and compressibility. The regularized Kelvinlet displacement basis is used in the same reconstruc-
tive framework as the method of Ref. 14 in Sec. 7.6 with an identical objective function to Eq. (8),
except a larger number of 160 control points distributed over the complete liver surface are required
to reach optimal algorithmic performance. Additional characterization and implementation details
are provided in Ref. 17. It should be noted that, compared with the finite element simulation, this
method assumes a specific local force density function that depends on the regularization param-
eter ε, and its assumption of an infinitely homogeneous elastic medium renders the solution less
adaptive to patient-specific organ geometry and mechanically disjoint contact interfaces.
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