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ABSTRACT. Background: Line-end-pull-back (LEPB) is a well-known systematic defect in
BEOL metal layers, where a line-end (LE) tip is pulled back from its desired location
due to lithography (litho) process effects. Severe LEPB directly affects BEOL
connectivity and may lead to partial or total metal-via disconnection.

Aim: LEPB can be characterized through model-based litho simulations but at the
cost of high computational resource consumption. This study aims to provide a fast
and accurate approximation of computationally expensive litho simulations through
regression-based machine learning (ML) modeling.

Approach: LEPB modeling is approached through the LightGBM model. Input fea-
tures were approached using density pixels, density concentric circle area sampling
(CCAS), and geometrical positioning surveying (GPS), which is an edge-based
engine that provides a direct one-to-one mapping between model features and geo-
metrical measurements between the LE as a point-of-interest and its surrounding
contextual patterns. The importance of LightGBM features by splits was employed
to reduce features across the used approaches.

Results: The reduced features of GPS produced almost the same modeling quality
(training: RMS ¼ 0.571 nm, δEWD ¼ 0.297 nm, and R2% ¼ 98.74%, and testing:
RMS ¼ 0.643 nm, δEWD ¼ 0.344 nm, and R2% ¼ 98.40%) with −22.22% fewer
number of features and less feature extraction runtime compared to the full features
set of density pixels and density CCAS approaches.

Conclusions: Compared to model-based litho simulations, the obtained calibrated
ML models can be used to provide fast, yet accurate predictions of the amounts of
pull-back or extensions introduced at LEs near vias, eliminating a major contributor
to systematic IC yield loss.
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1 Introduction
Machine learning (ML) techniques are dynamic powerful tools that perfectly fit complex big data
modeling problems, which is the domain inhibited by most electronic design automation (EDA)
problems. Huang et al.1 comprehensively surveyed incorporated ML applications that approach
several EDA tasks, mostly NP-complete tasks, showing how ML techniques are efficiently
employed in resolving complex big data problems, replacing traditional approaches. During the
past few years, ML techniques have experienced revolutionary adoptions in many EDA domains,
especially integrated circuit (IC) design and manufacturing domains, due to hardware utilization
and software reusability that provides ease-of-use, as well as ready-for-integration packaged ML
solutions. Conventional lithography (litho) simulations, including optical and etching model-
based simulations, are one of the most computationally expensive steps during IC manufacturing.
With large chip areas, simulation time and consumed memory are increasing exponentially.
Line-end-pull-back (LEPB), in which a line-end (LE) tip is pulled back from its desired location
due to litho process effects, can be precisely characterized through model-based litho simula-
tions, but at the cost of high computational resources consumption. For specific problems, such
as LEPB modeling, ML can provide a fast and accurate approximation of computationally
expensive simulations. In Sec. 1.1, we review ML applications in IC design and manufacturing
phases, in Sec. 1.2, we identify ML modeling approaches for IC layouts, and in Sec. 1.3,
we summarize common IC layout features representations. In Sec. 1.4, we state the aspects of
LEPB modeling.

1.1 ML Employment in IC Layout Applications
Wide varieties of ML applications have been incorporated throughout modern chip design and
fabrication flows, in both the IC design and manufacturing phases. Our review in this study
focuses on ML applications that use features derived from IC layout pattern representations.

1.1.1 ML applications for IC layouts during IC design-phase

Routing is the earliest step in the IC design flow in which the IC layout starts to be—its principal
characteristic is a nearly final definition of the physical structure of a design. AENEID2 is a litho-
friendly detailed router that uses litho simulation data from hotspot detection (HD) kernels,
which is an improved extension of Ref. 3. The AENEID router combines geometrical features
of layout patterns fragments with routing path data to perform detailed routing, avoiding potential
hotspots (HS) in the routing paths using artificial neural network (ANN) and support vector
machines (SVM) models. Xie et al.4 presented an ML application in IC design to predict design
rule checking (DRC) HS and design rules violations counts using a fully connected convolution
network (FCN) that takes red-green-blue (RGB) pixelized images of layout clips together with
routing information as input features. Liang et al.5 presented a DRC HS prediction for IC designs
in a sub-10 nm process using J-Net, which is a customized convolutional neural network (CNN)
based on extending the U-Net architecture6 and using high-resolution pixelized images for layout
clips as an input to the ML model. Pattern matching is one of the most frequently used tools by
both IC designers and manufacturers, and one of its significant applications is detection of sys-
tematic defects and HS. In advanced technology node fabrications, libraries of HS patterns are
shared by IC manufacturers with IC designers, so they can avoid the use of these patterns in their
designs. An illustration for such a flow is shown by Selvam et al. in Ref. 7, where the layout clips
are represented using density vectors, then CNN deep learning is used to detect process-sensitive
patterns. Although the flow is designed to predict litho HS patterns in the manufacturing phase,
but it is exported to IC designers to predict problematic patterns during design implementation.
Wuu et al.8 used density grid pixel components of layout clips as pattern representations with
two-level classifiers based on SVM ML model to classify patterns and predict HS. Design-for-
manufacturability (DFM) checks are part of IC physical verification and can be defined as
conservative rules checks beyond DRC that provide additional fabrication process margin to
IC designers. Wang et al.9 incorporated 17 localized geometrical features for metal-via LE pat-
terns with multi-layer perceptron (MLP) neural network (NN) architecture to check for metal-via
enclosure DFM violations. The aim of this model is to aid the IC design process and fix potential
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DFM violations before manufacturing. Table 1 shows a summary of ML applications that use
layout-extracted features during the IC design phase, mainly the routing, physical verification,
pattern matching, and DFM steps.

1.1.2 ML applications for IC layouts during IC manufacturing phase

Several ML applications were proposed to solve manufacturing-related problems in domains
such as litho HS detection,3,10–19 optical proximity correction (OPC),20–22 sub-resolution assist
features (SRAF) insertion,23,24 and litho simulation.25 Litho HS detection is one of the most plen-
tiful domains for ML applications, with a wide variety of related layout representation features.
Ding et al.3 presented a litho HS detection in a single layer using fragment-based geometrical
features and a hybrid ML model combining ANN and SVM. Yang et al.10 and Shin et al.11

approached the problem using a deep CNN to process pixel-based images representing the layout
and extract the feature map out of these layout images. Jiang et al.12 presented binarization
approaches in both layout representation and ML model parts to reduce execution time by avoid-
ing floating-point kernels. Layout clips are represented by binarized images and then passed to a
binarized neural network (BNN) to mitigate the complexity and reduce execution time. Feature
tensors and deep-biased learning were used by Yang et al. in Ref. 13, which starts by dividing the
layout clips into sub-blocks and obtaining the feature tensors by encoding on discrete cosine
transform (DCT) coefficients of each sub-block. The extracted features tensors are then passed
to a CNN model, followed by two fully connected nodal layers to get the classification output. In
Ref. 14, Matsunawa et al. segmented layout clips into blocks represented by density features,
then projected to lower-dimensional space through principal component analysis (PCA) to main-
tain the selection of features with high linear separability in lower dimensional space. The
selected features are passed to real AdaBoost, a decision-tree-based ML model using adaptive
boosting (AdaBoost). In Ref. 15, Matsunawa et al. tackled the HS using a deep-learning
approach with DNN model that has a self-features extraction and HS detection functionality.
Zhang et al.16 represented the layout clips by concentric circle area sampling (CCAS) and pro-
posed an ML model that employs smooth boosting. Dawar et al.17 extracted aerial image and
geometrical parameters with a random-forest (RF) classifier to detect litho HS. The extracted
aerial image parameters are done with approximations and include: (a) process variation band,
(b) normalized image log-slope, and (c) mask error enhancement factor. The extracted geomet-
rical parameters are performed for each edge of a polygon and include: (a) external space and
width and (b) densities around an edge. Yang et al.18 used the adaptive squish as a layout patterns
representation with a CNN architected model containing a significant portion of architecture
dedicated for features extraction, and in Ref. 19 used a more tailored, deeper CNN architecture
named “SquishNet.” Table 2 shows a summary of ML applications that use layout extracted
features during the IC manufacturing phase, mainly the detection of litho HS, OPC, SRAF place-
ment, and litho simulation steps.

Table 1 ML applications use layout extracted features during IC design phase.

Problem domain:
IC design Task ML model

Layout pattern
representation features Reference

Routing Litho-friendly
detailed router

ANN/SVM Fragments-based geometrical features 2

Physical
verification

Predict DRC HS CNN Layout clips: RGB pixelized images 4

J-Net Layout clips: pixelized images 5

Pattern
matching

HS prediction SVM Density features 8

CNN Density grid pixels vector 7

DFM Retarget-aware
DFM checking

NN (MLP) Localized geometrical and
density features

9
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1.2 ML Modeling Approaches for IC Layouts
A general perspective on ML learning approaches was highlighted by Lin et al.26 Considering the
reviewed ML applications that use IC layouts in the previous Sec. 1.1, we reintroduce this per-
spective with slight modification. ML modeling can follow one of two schemes: (a) traditional
approach or (b) deep-learning approach, as shown in Fig. 1. In the traditional approach, the input
data represent extracted features from the IC layout, and these features are passed to a predefined
architected off-the-shelf ML model from libraries, such as SciKit learn.27 The main challenges

Fig. 1 ML modeling approaches: (a) traditional ML approach and (b) deep-learning approach.

Table 2 ML applications use layout extracted features during IC manufacturing phase.

Problem domain:
IC manufacturing ML algorithm

Layout pattern
representation features Reference

Litho HS detection ANN/SVM Fragments-based geometrical features 3

BNN Layout clips: binarized images 12

DNN Density-based features 15

CNN Layout clips: pixelized image 10, 11

Frequency/DCT domain feature tensor 13

AdaBoost, DT Layout clips: density-based
features with PCA

14

Smooth boosting CCAS 16

RF Aerial-image and geometrical
parameters

17

SquishNet/CNN Adaptive squish 19

CNN Adaptive squish 18

OPC GAN Layout clips: pixelized image 20

HBM CCAS 21

MLP Polar Fourier transformation
(PFT) basis functions

22

SRAF placement Logistic regression
and DT

CCAS 23

Supervised online dictionary
learning and logistic regression

CCAS 24

Litho simulation Litho generative adversarial
network (GAN)(CNN and GAN)

Layout clips: RGB pixelized images 25
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with this approach are (1) choosing an adequate IC layout representation, (2) extracting descrip-
tive features, (3) selecting a suitable off-the-shelf ML model that fits properly with the learning
task, and eventually (4) tuning the model’s parameters to achieve the required accuracy in train-
ing and testing phases and avoid model overfitting. This approach provides a relatively shorter
model development turnaround-time (TAT); however, it needs cautious, careful selections
throughout the flow. Applications such as Refs. 2 and 8 in IC design phase, and Refs. 3,
14, 16, 23, and 26 in the IC manufacturing phase follow this approach.

In the deep-learning approach, the input IC layout patterns representations are passed to a
deep-learning ML model from libraries, such as TensorFlow.28 In this case, the model contains an
automated self-features extraction process in addition to the learning process. The self-features
extraction is carefully designed and architected in compromise with the learning process’s objec-
tives to extract meaningful features contributing to the model accuracy and avoid overfitting in
regression-based learning and false-positives in classification-based learning. For example, in
litho HS detection applications, Shin et al.11 presented self-feature extraction through CNN
deep-learning. The input layout is parsed into pixelized images through a sliding scanning win-
dow. Scanned images are passed to CNN with four convolutional pools for features extraction.
The numbers of connections per image in the four convolutional pools are 1.6 × 108, 1.5 × 109,
8.6 × 108, and 1.5 × 109, respectively, and must be run with GPU assistance to accelerate the
convolutional operations. Yang et al. in Refs. 10 and 19 presented deeper CNNs architectures for
feature extraction and also ran with GPU assistance. Selvam et al.7 used density-grid pixels vec-
tors with deep-learning CNN run with GPU assistance as well. Matsunawa et al.15 approached the
feature extraction using density-pixels and DNN, where the input layout is parsed into clips,
which are passed to DNN with an input layer (3600: 60 × 60 nodes) and four hidden layers:
(196: 14 × 14 nodes), (196: 14 × 14 nodes), (144: 12 × 12 nodes), and (144: 12 × 12nodes),
respectively. Specifying the appropriate DNN architecture is an iterative trials process15 objective
by minimizing the loss function based on the number of used hidden layers, hyperparameters,
transfer functions, and network connections. The main challenges with the deep-learning
approach are (1) selecting the proper architecture for the deep-learning model, as there is no
global solution that can fit all applications, (2) selecting the proper convolutional kernel sizes
for CNN models and the number of hidden layers and the number of nodes per layer for DNN
models, (3) selecting the model’s activation functions and tuning the hyperparameters to achieve
the optimum accuracy, and (4) selecting proper layers connections and dropout ratios between
layers to avoid model overfitting. All these steps are experimental and impact the model develop-
ment TAT. In general, the optimized input clip size and pattern representation play a significant
role in the accuracy of the deep-learning models. Moreover, finding the appropriate compromised
architecture with proper hyperparameters of the self-features extraction process and the learning
process is a significant material of research that might also result in longer model development
TAT. The deep-learning approach can be traced in applications, such as Refs. 4 and 7 in the IC
design phase, and Refs. 10 to 13, 15, 18, and 19 in the IC manufacturing phase.

In this study, we focus on efficient IC pattern representation with predefined architected
off-the-shelf ML models to avoid deep-learning’s self-features extraction that requires high
computational resources, such as GPU assistance and longer model development TAT.

1.3 IC Layouts Feature Representation for ML Applications
Many pattern representations have been introduced to extract ML features for IC layout patterns.
Although fragment-based geometrical features2,3 provide geometrical information about the con-
text around a fragment of interest, this approach generates a massive amount of data per fragment
for a full chip layout that requires equally massive computational and storage resources. Density-
based features7,8,14,15 are one-to-many geometrical encoding representations, as one density value
can be mapped to different geometrical shapes, which drops some of the spatial data about the
context around a point of interest (POI) based on the selected resolution. To capture dense geo-
metrical information, especially with tight layout dimensions, high resolution with a small grid
size should be used, which may require a deep-learning approach with self-features extraction
capabilities.7,15 Although Matsunawa et al.14 presented an optimized approach in selecting
adequate density grid pixels representation (grid area 1.2 μm and grid size 10 × 10 pixels) for
litho HS detection without deep-learning by measuring the distance between HS and NHS
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patterns in a lower dimensional space using PCA components, this representation is bounded by
a classification problem. For a regression-based problem, we may need higher resolution and
accordingly, a larger number of features that may require deep-learning. CCAS was first intro-
duced by Matsunawa et al.21 and applied on a fragmentation basis with a hierarchical Bayes
model (HBM) to reduce the number of iterations in model-based OPC. It considers the fact that
diffracted light from the mask patterns is propagating concentrically. CCAS was used in Refs. 23
and 24 for SRAF placement and in Ref. 16 for litho HS detection. Although CCAS provides a
compact IC layout patterns representation, such as density-based features, it still drops some of
the spatial data about the context around the POI, especially with high resolution representation.
Increasing the number of sampling points creates adjacent circles with redundant information.
This problem was highlighted by Geng et al.,24 who tried to eliminate this redundancy through
self-adaptive dictionary learning in a supervised feature encoding step, where CCAS features are
mapped into a different lower dimensional space as sparse encoded features to eliminate the
redundancy. The main problem with this technique is data leakage,29 where the feature encod-
ing’s objective function jointly uses the supervised predicted labeled data to encode features and
then passes a piece of prediction data to the ML model’s input encoded features. In Ref. 16,
Zhang et al. tried to optimize the selection of circles index using mutual information to compute
the dependency between circle indexes and classification prediction variable. The training and
testing data are extracted using this optimized circle indexes, which can also be considered as
a source of data leakage, as the testing data set has prior knowledge about the optimized circle
index. Image-pixel-based features4,5,10,11,20,25 do not provide a direct mapping to features, but
need deep-learning models with self-features extraction. This approach is usually employed with
CNN models and potentially needs GPU assistance. It should be highlighted that both density-
based-pixels and image-based-pixels feature representation quality directly depend on selecting
adequate resolutions for the layout critical dimensions (CD) to maintain descriptive details.
Moreover, the information gain in every pixel is very high and that challenges features reduction
and features merging or synthesis without deep-learning self-feature extraction. Frequency
domain/DCT features13 are not computationally friendly—layout patterns are clipped and sub-
jected to density-based scanning, then transformed into the frequency domain using DCT.
Similarly, aerial image features17 and PFT features22 need optical simulations to be calculated,
which may be suitable for ML-OPC and litho HS detection applications where features calcu-
lation is bounded by the downstream application and embedded within the overall flow.
Adaptive-squish-pattern18,19 is an adaptive-grid bitmap representation for a layout pattern that
provides a compact lossless representation of layout patterns. However, it does not provide direct
one-to-one mapping with geometrical features, but requires a deep-learning feature extraction
through CNN models as presented in Refs. 18 and 19. Although Ref. 9 presented a mixture
of density features and localized extracted geometrical features to represent layout patterns, the
list of extracted features still ignores several descriptive details about the contextual patterns,
such as corners and internal and external spacings. To address this problem, we present a novel
edge-based approach named geometrical positioning surveying (GPS)30 to represent the layout
POIs and their surrounding context of patterns. Further details are discussed in Sec. 2.

1.4 Line-End-Pull-Back Modeling Aspects
The LEPB problem can be characterized by two main aspects: (1) LE corner rounding and (2) LE
shortening. Based on Fraunhofer diffraction patterns and Fourier optics,31 the band limitations of
the optics system filter out high spatial frequencies and impose rounding at the corners32; in LEs,
this rounding is severe. LE shortening depends on the line width and surrounding context—
isolated or semi-isolated LEs whose width is near the resolution limit of the litho process typ-
ically suffer from noticeable shortening on the wafer,31 whereas very dense LEs tend to merge
with neighbors. Furthermore, the etching process exacerbates the impact of corner rounding and
LE shortening. Consequently, fabrication process variation sensitivity affects both LE corner
rounding and LE shortening. Figure 2 shows the difference in corners and LEs between (a) layout
designed patterns and (b) simulated patterns through a litho (optical and etching) manufacturing
system.

In the conventional approach, LEPB modeling is conducted as a part of OPC modeling32 and
is objective by an edge-placement-error convergence at LEs, which mandates careful tuning for
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LE fragments in the OPC recipes. ML-OPC20–22,33 and GPU-based OPC34 have been proposed to
accelerate OPC modeling. LEPB amounts can be precisely characterized through calibrated
model-based litho (optical and etching) simulations, which require high computational resources
consumption. Shin et al.11 estimated that model-based litho simulation usually takes more than
100 CPU h∕mm2, and it could take several days to prepare accurate calibrated models. We
explain the conventional litho simulation flow in detail in Sec. 3.2.

In this paper, we present fast and accurate LEPB modeling through a supervised regression-
based ML approach. Input features were approached using density pixels, density CCAS, and
GPS, which is a novel edge-based approach that describes an LE as a POI and its surrounding
context of patterns in the IC layout. GPS provides a direct one-to-one mapping between input
features passed to the ML model and physical measurements between the POI and its surround-
ing patterns. The remaining sections are organized as follows: Sec. (2) explains GPS, Sec. (3)
explains the conventional litho simulation flow used to model LEPB and data collection proc-
esses, Sec. (4) demonstrates the ML modeling flow, Sec. (5) demonstrates the experiments
conducted on an industrial test case, and Sec. (6) presents our conclusions.

2 Geometrical Positioning Surveying
As discussed in Secs. 1.1–1.3, most layout context analysis focuses on image-based analysis
(such as pixel-based image analysis) or density-based analysis, both of which use identical infor-
mational density datasets and accordingly, require a self-feature extraction process in deep-
learning ML models that mandates both high-computational resources, such as GPU assistance,
and (usually) longer model development TAT to select the proper model architecture. Moreover,
it limits both the ML model interpretability and the ability to decompose the effect of different
contextual polygons on a selected POI, as highlighted in Ref. 15. GPS30 is an edge-based engine,
implemented using the Calibre® standard verification rule format (SVRF), that extracts direct
one-to-one directional geometrical features about a POI and its surrounding context of polygons
in the layout. These features are measured and extracted through directional geometrical kernels
(DGKs), which are the core measuring functions of GPS that use Calibre SVRF edge-based
operations of geometrical measurements and processing. Further details about DGKs are pro-
vided in Sec. 2.3.

2.1 Constrained Generality Concept in IC Layouts
The functionality of GPS relies on the constraint generality concept (CGC), which is inherent to
IC layout designs. In essence, the CGC ensures that patterns in a layout design are not uncon-
strained, such as in a freeform drawing that may take any shape. Layout designers are restricted to
certain types of geometries, such as polygons, as well as being subject to other restrictions

Fig. 2 Differences in corners and LEs between: (a) layout designed patterns and (b) layout
lithography simulated manufactured patterns.
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derived by place and route tools, DRC and DFM rules, etc., all of which imply constraints in
polygon width, spacing, direction, etc. These constraints not only result in layout design patterns
that are a much smaller subset of the freeform population but also support the ability of the
edge-based engine to describe an edge’s contextual relations and measurements to neighboring
polygons.

2.2 GPS Measurement Constructors
As shown in Fig. 3, a central POI is placed at the center of the LE tip of a residential
polygon surrounded by contextual polygons in all directions and with different structures and
dimensions.

A respective edge is defined based on two main features: topological features and dimen-
sional features.30 Topological features comprise quantized values restricted to a discrete set that
describes a certain geometrical state about the edge, such as orientation (horizontal, or vertical)
and corner type (convex, concave, or no corner). Dimensional features represent continuous
numerical measurements, such as spaces, widths, enclosures, and angles. Thus, topological fea-
tures are based on the conditional constraints of the layout design process, and dimensional fea-
tures expound on the numerically constrained particulars of a given layout design. Consequently,
decomposing the quantifiers of edges (which are the basic constructor of patterns) into topologi-
cal and dimensional features requires GPS to extract direct one-to-one directional geometrical
features about a POI and its surrounding context of polygons in the layout.

This description is decomposed into the following constructors:

• Directional relations vector, which describes the border around the POI within the search
distance (SD) in predefined directions coordinated by the POI, providing the directionality
aspect to measured geometrical properties.

• Orientation relations vector, which describes the orientation of the edge/polygon, such as
horizontal or vertical.

• Corner relations vector, which describes the corners and defines corner properties, such as
the type of corner and its constituting edges.

• Geometrical relation vector, which describes the geometrical properties of the residential
polygon and the contextual polygons, such as widths and spaces.

• Zone relation matrix, which compiles various geometrical properties into different zones
according to the distance from the POI.

Fig. 3 Layout POI and surrounding context of patterns.
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As shown in Fig. 4, the combinational embodiments structured by these constructors form
three categories of descriptive geometrical measurements:

• POI measurements for the POI and the residential polygon, which is the polygon where
the POI is placed. If the POI is placed on a polygon, then the residential polygon mea-
surements is calculated, and if the POI is placed in a space, it is not calculated.

• Cardinal measurements for contextual patterns in east, north, west, and south directions.
• Ordinal measurements for contextual patterns in north-east, north-west, south-west, and

south-east directions.

2.3 DGKs and GPS Features Vector
DGKs are the core geometrical measuring functions applied per direction in each zone. These
measuring functions use the constructors shown in Fig. 4 to calculate POI, cardinal, and ordinal
measurements, as explained in the previous section. These core measuring functions are imple-
mented using Calibre SVRF commands that physically extract geometrical measured features.
For example, the EXTERNAL command is used to measure distance-related features, and
the INTERNAL command is used to measure width-related features. Directional, orientation,
corners, and zone relations are implemented using DFM PROPERTY and DFM Functions
operations. Then, the measured geometrical features by DGKs are concatenated using DFM
PROPERTY commands in a single feature vector entry per each POI. Accordingly, the POI
feature vector can be represented by the following equation to reflect the three categories of
measurements shown in Fig. 4:

Features vector of the POI and its surrounding context of patterns are given as

EQ-TARGET;temp:intralink-;e001;117;117VðFPOIÞ ¼ hfPi �
XφSD

Z∈fz1;z2;z3g
hfCCi � hfCOi; (1)

where

Fig. 4 GPS geometrical measurements constructors.
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• VðFPOIÞ represents a vector of all features of the POI and its surrounding context of
patterns.

• hfPi represents POI measurements, which is a features vector of geometrical measurements
for the POI edge and the residential polygon, and it is decomposed into a dimensional
vector hDPi (containing numerical continuous data for five features) and a topological
vector hTPi (containing discrete finite-states data for eight features).

EQ-TARGET;temp:intralink-;sec2.3;114;663hfPi ¼ hDPi � hTPi
• φSD represents the SD shown in Fig. 3, which is empirically represented by the optical

diameter (OD) of the litho system. SD can be configured to fit different applications.
• z1; z2; z3 represent three measurement zones, as shown in Fig. 3. These zones are centered

by the POI and extend to the surrounding context of patterns within the OD distance. Same
as SD, measurement zones can be configured to fit different applications.

• hfCCi represents the cardinal measurements, which is the features vector of the geometrical
measurements in the cardinal directions for the contextual patterns around the POI.

• hfCOi represents ordinal measurements, which is the features vector of the geometrical
measurements in the ordinal directions for the contextual patterns around the POI.

Both hfCCi and hfCOi can be decomposed into fDCCg, fTCCg and fDCOg, fTCOg, respec-
tively. Where fDCCg, fDCOg represent matrices of dimensional features for the contextual pat-
terns in the cardinal and ordinal directions with the size of (7 features × 4 directions × 3 zones)
and (10 features × 4 directions × 3 zones), respectively, fTCCg and fTCOg represent matrices of
topological features for the contextual patterns in the cardinal and ordinal directions with the size
of (3 features × 4 directions × 3 zones) and (5 features × 4 directions × 3 zones), respectively.

This topological and dimensional features decomposition expands Eq. (1) into the following
equation:

Expanded features vector with dimensional and topological features are given as
EQ-TARGET;temp:intralink-;e002;114;407

VðFPOIÞ ¼ hhDPi � hTPii

�
XφSD

Z∈fz1;z2;z3g

�� X
Dir∈fE;N;W;Sg

fDCCg ⊗ fTCCg
�

�
� X

Dir∈fNE;NW;SW;SEg
fDCOg ⊗ fTCOg

��
; (2)

where operators f g and ⊗ are matrix construction and concatenation operations, h i and � are
vector construction and concatenation operations, and

P
is an element-wise processing oper-

ation. These operations are incorporated using DFM PROPERTY commands, to generate the
feature vector VðFPOIÞ.

2.4 GPS Topological and Dimensional Features
Based on Eq. (2) for VðFPOIÞ, the collected geometrical features of the POI and its surrounding
context of patterns can be categorized into

• Topological features set hTPi, fTCCg, fTCOg that refers to finite-state discrete data rep-
resenting the topological aspects of the pattern structured by the POI, residential polygon,
and the surrounding context of polygons, which represents the topological signature

• Dimensional features set hDPi, fDCCg, fDCOg that refers to numerical continuous data that
combine with the topological features to compose the pattern structure, representing the
dimensional signature.

The GPS topological and dimensional signatures are unlike adaptive squish pattern signa-
tures,18,19 which are low-level bitmap descriptions of patterns where each bit represents a unique
value by its own and requires further feature extraction. GPS signatures directly provide descrip-
tive features that reflect actual geometrical (topological and dimensional) properties. Table 3
shows examples of GPS measured features with features description and feature types.
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Illustrative examples for the measured features are shown in Fig. 5 for the same pattern catego-
rized as (a) POI measurements, (b) cardinal measurements, and (c) ordinal measurements.
Further details about GPS features and DGKs implementation can be found in Ref. 30.

Metaphorically, GPS is an edge-based camera that snaps geometrical edge-based images for
the POI and its surrounding context of patterns, rather than the conventional pixel-based or
density-based images.

3 Simulation Flow and Data Harvesting
The test case used in this study is a fully connected industrial layout with electrical functionality
and lithographic manufacturing recipes for a single exposure 28 nm technology node. We focus
on BEOL interconnect layers stack V1-M2-V2, where M2 is a vertical two-dimensional
metal layer with minimum line/space width of 40 nm, and the via layers (V1 and V2) are of
size 40 nm.

Table 3 Example of GPS measured features.

Feature name Feature description Feature type

POI_Width Length of POI resident edge Dimensional

POI_Orientation Orientation of POI resident edge Topological

Target_Total_Length The resident polygon perimeter Dimensional

Target_Facial_Border The distance to the facial border from the POI edge Dimensional

Target_a_Zone_c Equals (1) if a contextual polygon exists in the corresponding
cardinal direction and zone, otherwise (0)

Topological

Target_a_Distance_c Distance from POI to the corresponding polygon Dimensional

Target_a_Corner_Type_c The type of the corresponding ordinal direction
corner: (1) convex corner, (2) concave corner,

and (3) no corner

Topological

Target_b_Distancec Distance from POI to the corresponding ordinal corner Dimensional

aCardinal direction index, i.e., east, north, west, and south.
bOrdinal direction index, i.e., north-east, north-west, south-west, and south-east.
cZone index, i.e., zone 1, zone 2, or zone 3

Fig. 5 Illustrative examples of GPS measured features. (a) POI measurements, (b) cardinal mea-
surements, and (c) ordinal measurements.
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3.1 POI Definition and Placement
The primary objective of this study is LEPB prediction for LEs that have a nearby via, as these
are the most critical LEs in any design, and the most likely locations where a systematic defect
can occur that results in partial or total metal-via disconnection. Accordingly, we set the follow-
ing criteria to select POIs as LE tip with length ≤70 nm and has a via (either V1, V2, or both)
placed within a distance ≤100 nm away from the LE tip.

3.2 Lithographic Manufacturing Simulation Flow
The conventional litho manufacturing simulation workflow is shown in Fig. 6 and the associated
processed layers are shown in Fig. 7. The flow is used to precisely calculate the amounts of
pullbacks and extensions at each LE, which will be used to train and test the ML models in
the following sections.

The input design layout passed the physical verification sign-off process, and input design
layers (V1-M2-V2) are shown in Fig. 7(a). The POI placement criteria stated in Sec. 3.1 is
applied on a testcase of size 1 mm-by-1 mm, resulting in 248,798 POIs. The placed POIs are
shown in Fig. 7(b). The layout M2 layer is then subjected to etch-biasing compensation to gen-
erate the retarget layer shown in Fig. 7(c). Hybrid SRAF insertion is used to place assist features
using both (1) a model-based approach using calibrated litho model (optical and etching models)
and (2) rule-based approach based on design dimensions. The OPC process is performed based
on a litho model basis and applied on the placed SRAFs seeds and M2 retarget layers, including
(1) process-window OPC, (2) SRAF print avoidance, and (3) mask rules constraints to maintain

Fig. 6 Model-based lithographic manufacturing workflow to measure target LEPB.

Fig. 7 Lithographic manufacturing workflow associated layers. (a) Origin drawn target V1-M2-V2,
(b) placed POIs on selected line-ends, (c) etching biased retarget M2 layer, and (d) model-based
OPC and SRAFs placement.
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a practical industrial approach. The placed SRAFs and OPC final masks are shown in Fig. 7(d).
Generated masks (OPC and SRAFs) are used in model-based litho (optical and etching) sim-
ulation and verification to generate the final contours after etching the printed contours at nomi-
nal process window conditions. Target LEPB is measured between the final etched contours and
M2 input target layer (original drawn) at POIs.

Figure 8(a) shows a histogram of target LEPB amounts (nm), where negative amounts refer
to LE pullback and positive amounts refer to LE extensions. Although the maximum LEPB
amount is 21.9 nm, the LEPB amount should not be viewed as a standalone value, but as a
percentage of the TIP-to-VIA distance to reflect the severity of the pullback, as shown in
Fig. 8(b). The maximum target LEPB severity is 42%, with a target LEPB amount of 21 nm
and TIP-to-VIA distance of 50 nm.

3.3 Layout ML Features Harvesting
As explained in Sec. 3.2, the LEPB amount at each POI is measured through a conventional litho
simulation flow, as shown in Fig. 6. To quantify the geometrical features provided by GPS, we
integrated density pixels and density CCAS features as alternative comparative approaches. For
consistency comparison between the three implemented approaches, we impose a POI-based
analysis and center the SD of each approach around the POI and select adequate resolution within
a comparable number of features. The optical system used in this study is a deep-ultraviolet
system with an OD of 1.28 μm; accordingly, the SD centered by the POI should be 0.640 μm
for all approaches. It should be highlighted that in typical OPC modeling, especially etching
process considerations, the SD can be beyond the OD up to 25 μm or even 50 μm to account
for long-range effects. However, for consistent comparisons, we set the SD approximately equal
to the system’s OD for all approaches.

3.3.1 GPS features vector

As shown in Eq. (2), the number of measurement zones has a direct impact on the length of the
features vector produced by GPS. Increasing the number of measurement zones will accordingly
increase the length of the features vector. In this study, we empirically set three measurement
zones with equal steps covering the SD centered by the POI up to the OD. This yields 313
features representing the POI and its surrounding context of patterns. Figure 9 shows the dis-
tribution between topological and dimensional features, and their counts for: (1) POI and resident
polygon features, (2) zone 1 features, (3) zone 2 features, and (4) zone 3 features.

Fig. 8 Histograms of (a) target LEPB amount (nm) and (b) target LEPB severity amount (%).

Fig. 9 GPS topological and dimensional features vectors and their counts.
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Although the number of edges and corners of the context around each POI is different, the
extracted GPS features vector length is fixed for all POIs. Figure 10(a) shows the GPS repre-
sentation of the POI and its surrounding context of patterns.

3.3.2 Density CCAS features vector

We implanted the density CCAS representation with 16 sampling circles equally distributed with
a radius step of 40 nm (equal to target layer line/space width) covering the search area and 16
sampling axes with a radial angular step of (π∕8), as shown in Fig. 10(b). We approached sam-
pling points based on 1 nm square pixel in a grid of 1280 × 1280 pixels covering the SD centered
by the POI. This approach results in 16 sampling points for each sampling circle at the inter-
section points between circles and axes. Eventually, this sampling yields 257 density CCAS
features.

3.3.3 Density pixels features vector

The density grid pixel approach is shown in Fig. 10(c), where the density grid square window of
size 1.280 μm is divided into 16 × 16 grid pixels of squares with a size of 80 nm (equal to the
target layer pitch), and density values are calculated inside each pixel, which eventually yields
256 density pixels features.

3.3.4 Features extraction evaluations

We used five test cases belonging to the same manufacturing technology, which was previously
described in this section, to quantify the runtime and memory consumption of SVRF scripts that
extract features using GPS, density CCAS, and density pixels. Table 4 shows each test case’s area
(in mm2) and the number of placed POIs.

All runs were exclusively executed on a single machine with 32 CPUs, Intel® Xeon®,
2.90 GHz, with a system memory of 384 GBs, and using the same CALIBRE running options.
For each evaluation run, we report the runtime, the peak memory consumption during the exe-
cution of the run, the CPU h∕mm2, and the CPU h/1 M POIs to reflect the needed processing time

Fig. 10 Incorporated layout ML features: (a) GPS, (b) density CCAS, and (c) density pixels.

Table 4 Features extraction evaluation test cases.

Test case A B C D E

Area (mm2) 1.416 2.214 3.340 2.408 1.321

Number of POIs 248,597 266,935 540,415 443,919 676,121
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per 1 million POIs within the processed area (mm2). Tables 5–7 show the evaluations of GPS,
density CCAS, and density pixels feature extraction, respectively.

The average CPU h∕mm2 of GPS is less than the density CCAS and density pixels, and
much less than that required for model-based litho simulation, which is estimated by Shin et al.
in Ref. 11 to be >100 CPUh∕mm2. In addition, the peak memory required during the run
execution by GPS is less than that required for the density CCAS and the density pixels

To predict the target LEPB, ML features representing the POI and its surrounding context are
not sufficient on their own. We add localized features, which are layout measurements specific to

Table 5 GPS features extraction runtime and peak memory consumption.

Test case Real time (H) Peak memory (KB) CPU (h∕mm2) CPU (h/1M POIs)

A 0.05 1670 1.13 6.44

B 0.06 1805 0.87 7.19

C 0.09 2102 0.86 5.33

D 0.07 1875 0.93 5.05

E 0.11 2665 2.66 5.21

Avg. CPU (h∕mm2) Avg. CPU (h/1M POIs)

1.29 5.84

Table 6 Density CCAS features extraction runtime and peak memory consumption.

Test case Real time (H) Peak memory (KB) CPU (h∕mm2) CPU (h/1M POIs)

A 0.30 2464 6.78 38.67

B 0.31 2587 4.48 37.16

C 0.64 3146 6.13 37.90

D 0.52 2667 6.91 37.48

E 0.78 3708 18.89 36.92

Avg. CPU (h∕mm2) Avg. CPU (h/1M POIs)

8.64 37.62

Table 7 Density pixels features extraction runtime and peak memory consumption.

Test case Real time (H) Peak memory (KB) CPU (h∕mm2) CPU (h/1M POIs)

A 0.92 25,909 20.79 118.43

B 0.94 25,986 13.59 112.69

C 2.44 55,606 23.38 144.48

D 1.86 46,219 24.72 134.08

E 3.35 72,503 81.15 158.55

Avg. CPU (h∕mm2) Avg. CPU (h/1M POIs)

32.72 133.65
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the LEPB prediction problem, such as line-end width, tip to via distance, and via status (a cat-
egorical feature that states if the via is a top or bottom via).

4 Machine Learning Modeling Flow
The objective of the ML data modeling flow is to calibrate ML models to predict target LEPB at
POI locations based on various features sets. As discussed in Sec. 2, GPS provides direct one-to-
one directional geometrical features describing a POI and its surrounding context of polygons in
the layout, which paves the way toward using predefined architected off-the-shelf ML models.

4.1 Decision-Trees and IC Layouts
The decision tree (DT) regressor is a supervised ML algorithm that aims to model a continuous
prediction target by building a tree structure consisting of decision nodes and branches. A simple
explanation of DT is shown in Fig. 11. The decision node contains a subset of the input features,
and the decision branches are rules applied to the node’s features. Based on the number of fea-
tures in a parent node and applied decision rules, subsequent child nodes are created through
splits. Each of the child nodes inherits a subset of the parent node features with more pivotal
branches. In the DT classifier, splits are based on information gain and entropy, whereas in the
DT regressor, the split decision is based on information gain and error measurement criteria to
evaluate the deviation from the prediction target.

As we explained in Sec. 2.1, the IC creation process is constrained by many rules derived by
place and route tools, DRC and DFM rules, etc., all of which imply constraints in polygon width,
spacing, direction. Each of these constraints has boundaries and can be constructed in the form of
a DT model. Dawar et al.17 charted an example of a DT model for a simple constrained rule of
tip-to-tip. We reintroduce this example in Fig. 12, with slight modifications to explain how a
simple IC constrained rule construction can be approached through DT models.

This analogy can be extended to GPS features as well, as the features directly represent
directional topological and dimensional measurements for a POI and its surrounding context

Fig. 11 DT growing with level and leaf.

Fig. 12 Example of simple DT with simple constrained rule.
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of patterns and can be constructed in the form of a DT model. In addition, DT models have been
incorporated with density pixels features,14 aerial image, and geometrical features17 for litho HS
detection applications, and with CCAS features for SRAF placement.23

Initially, we selected random forest (RF)35 and adaptive-boosting RF (AdaBoostRF)36 ML
models from Scikit-learn ensemble regressors.37 However, we faced a limitation with the RF
model, as it does not natively support categorical features, and GPS topological features are
categorical features. We tried to use one-hot-encoding (OHE)38 to encode GPS topological fea-
tures, but this approach significantly increased the number of features, because based on the
number of values that each categorical feature can take, OHE extends each categorical feature
into several extended encoding features with low cardinality, which tends to create unbalanced
biased trees.39 Increasing the number of features mandated the usage of a large number of estima-
tors that roughly fit with input data and make the model more vulnerable to overfitting, especially
with AdaBoostRF. Moreover, we discovered that the GPS topological features were located at the
bottom of the feature-importance list produced by the RF. This low priority meant the model did
not make significant use of the benefits of GPS topological features, due to the lack of native
support of categorical features by the RF regressor combined with the low cardinality of GPS
topological features after OHE. Other encoding techniques such as target encoding40 could be
used, but they will make the ML modeling process subject to data leakage,29 whereas the lack of
native categorical features support in the RF model remains a challenge. These limitations moti-
vated us to employ a LightGBM41 model.

4.2 LightGBM Regressor
The LightGBM41 regressor is a gradient-boosting DT-supervised ML model that natively sup-
ports integer-encoded categorical features by finding the optimal splits over categorical features.
A sorted histogram for each categorical feature’s values is used to partition the categories into
subsets,41 and a reduced complexity algorithm42 is used to find the optimum partitions. Then, the
optimal split points are located on the sorted histogram based on the training objectives at each
split.39 LightGBM provides two main advantages: (1) gradient-based one-side sampling, which
samples the training data on a gradients-basis, and (2) exclusive feature bundling through a
greedy algorithm, which provides better performance than OHE.41 One of the main advantages
of LightGBM is that it is fast41 compared to other DT models, such as XGBoost.43 This speed is
due primarily to growing fewer trees through optimized leaf-wise splits, rather than level-wise
growth, as shown in Fig. 13,44 which significantly speeds up the training process. LightGBM also
supports ensemble learning, where a series of base DT models are trained in sequence on ver-
sions of the training data, with each model achieving improved learning based on the prediction
error (PE) in the previous model. The final prediction is produced through voting across all base
models.

A list of LightGBM model parameters that we encountered by tuning throughout our evalu-
ation experiments is found in Table 8.

4.3 GPS Topological Signatures Features
As explained in Sec. 2.2, GPS topological features are categorical features that take finite-state
discrete data values to represent the topological aspects of the pattern. The combination of all
topological features within a measurement zone is the zone’s topological signature, which is a
dimensionless integer-encoded number that refers to a specific constellation of topological com-
binations within the zone. Patterns that have the same topological signature of a given zone have

Fig. 13 DT growing through splits: (a) tree growth through leaf-wise splits (LightBGM) and (b) tree
growth through level-wise splits.
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the same topological aspects in this zone. Consequently, the patterns that have the same topo-
logical signatures in all zones have the same topological feature values, and accordingly the same
topological aspects across all measurement zones, although they can have the same or different
dimensional features. Instead of passing all 104 GPS topological features to the LightGBM
model, we use only four topological signatures features for (1) POI and resident polygon, (2) zone
1, (3) zone 2, and (4) zone 3, as shown in Fig. 14. This reduces the GPS features vector length to
213 features instead of 313 features, and, as highlighted in Sec. 4.1, the LightGBM model
handles categorical features with integer-encoding values without numerical biasing.

4.4 Experimental Evaluations
Besides collecting measured target LEPB at each POI, the following features are collected:
(1) localized features, (2) GPS features, (3) density-pixels features, and (4) density-CCAS fea-
tures. Three experimental sets of features are formulated, as shown in Table 9. Each of the exper-
imental feature sets is trained with LightGBM to predict target LEPB.

Fig. 14 GPS features with topological signature features.

Table 9 ML experimental evaluations features sets.

Features set Incorporated features Number of features

DENSITY_PIXELS Density pixels features (256) + (5) localized features 261

DENSITY_CCAS Density CCAS features (257) + (5) localized features 262

GPS GPS features (213) + (5) localized features 218

Table 8 LightGBM model parameters.

LightGBM parameters Description Parameter value

boosting_type Select the boosting type “gbdt”: gradient boosting DT

objective Select the model’s objective “regression”: regression with L2 loss

tree_learner Selects the tree learner “serial”: single machine tree learner

num_leaves Maximum tree leaves for base learners 128

max_depth Maximum tree depth for base learners −1: means no limit

learning_rate Boosting learning rate 0.1

n_estimators Number of boosted trees to fit 100

min_child_samples Minimum number of data
needed in a child (leaf)

20

min_child_weight Minimal sum hessian in one leaf 0.001

max_cat_threshold limit number of split points considered
for categorical features

64
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The ML modeling flow shown in Fig. 15 starts by dividing the input data randomly into
training and testing data sets, with allocations of 80% and 20%, respectively, to maintain healthy
testing on unseen data by the ML models during the training phase to avoid data leakage.29 The
data preprocessing step normalizes input features and target prediction before starting the train-
ing phase, and the same preprocessing is applied to the testing data set. The training phase is then
triggered, producing training predictions, and the calibrated ML model is passed to the testing
block, which produces testing predictions. The error calculation and error analysis steps (which
are explained in detail in the next section) are applied to the training and testing predictions and
the results compared against the actual measured target LEPBs to determine the quality of the
training and testing.

5 Experimental Evaluations Results
To aid navigation through the results of the various experimental features sets listed in Table 9
trained with LightGBM model, we generated a heat-map scatterplot for each set and each mod-
el’s training and testing predictions. In these plots, the model predictions are on the X axis with a
horizontal top histogram, whereas the actual measured target LEPB values are on the Y axis with
a vertical left histogram. A solid black 45 deg line is added to mark optimal predictions matching
actual targets, and solid and dotted red lines are added to mark 5% and 10% PEs, respectively.
The heat map reflects data points density where the color code starts with blue points represent-
ing 10 data points, then gradually changes colors toward red points representing 1K data
points.

5.1 ML Model Error Quantifiers
The PE at each data point is defined as PEi ¼ ðyi − fðxiÞÞ, where i represents the data point
index, yi represents the actual measured target value at the data point, and fðxiÞ represents the
value predicted by the model using a features vector xi. To quantify the quality of the incorpo-
rated models’ training and testing predictions across the experimental features sets, we extract the
following error quantifiers: (1) predictions coefficient of determination (R2), (2) root mean
squared (RMS) of the PEs, and (3) standard deviation of prediction residuals error wideness
distances (δEWD). R2 is defined as 1 − ðRss∕TssÞ, where Rss is the residual sum of squares,
Tss is the total sum of squares, and R2 indicates the quality of model training and testing proc-
esses, with values closer to “1” reflecting higher quality. The RMS of predictions errors is
defined as SQRTð1n �

P
n
i ðPEiÞ2Þ, where n is the total number of data points, and the result

indicates the error in the predicted target, with values closer to “0” reflecting better predictions.
To indicate the confinement of predictions around the 45 deg line, we measure δEWD, which is
defined as SQRTð1n �

P
n
i ðPEi − μPEi

Þ2Þ, where PEi ¼ jPEij∕
ffiffiffi
2

p
and μPEi

is the mean of PEi

values. We use PEi instead of PEi, which has a mean close to zero and produces a standard
deviation value close to the RMS value. The values of δEWD closer to “0” reflect more confine-
ment predictions around the 45 deg line.

Fig. 15 ML data modeling flow.
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5.2 Modeling LEPB Using Density-Pixels Features
The training and testing LEPB prediction results (μm) of the LightGBM model with the
DENSITY_PIXELS features set are shown in Figs. 16(a) and 16(b), respectively. The error quan-
tifiers are listed in Table 10, where the prediction RMS error values are <1 nm, with no obser-
vations of overfitting in the testing results, δEWD results show confined predictions within 0.5 nm,
and R2 results show an overall good fitting of LEPB predictions to the input features set.

5.3 Modeling LEPB Using Density-CCAS Features
The training and testing LEPB prediction results (μm) of the LightGBM model with a
DENSITY_CCAS features set are shown in Figs. 17(a) and 17(b), respectively, with close

Fig. 16 LEPB predictions results using LightGBM and density-pixels features set: (a) LightGBM
with density-pixels training and (b) LightGBM with density-pixels testing.

Table 10 LEPB PE quantifiers using LightGBM and density-pixels features set.

Learning phase RMS (nm) δEWD (nm) R2 (%)

Training 0.538 0.284 98.89

Testing 0.616 0.338 98.53

Fig. 17 LEPB predictions results using LightGBM and density-CCAS features set: (a) LightGBM
with density-CCAS training and (b) LightGBM with density-CCAS testing.
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behavior correlation to the DENSITY_PIXELS features set. The error quantifiers are listed in
Table 11, where the prediction RMS error values are <1 nm, with no observations of overfitting
in the testing results, δEWD results show confined predictions within 0.5 nm, and R2 results show
an overall good fitting of LEPB predictions to the input DENSITY_CCAS features set.

5.4 Modeling LEPB Using GPS Features
The training and testing LEPB prediction results (μm) of the LightGBM model with GPS fea-
tures set are shown in Figs. 18(a) and 18(b), respectively, with very similar behavior to the
DENSITY_PIXELS and DENSITY_CCAS features set. The error quantifiers are listed in
Table 12, where the prediction RMS error values are <1 nm, with no observations of overfitting
in the testing results, δEWD results show confined predictions within 0.5 nm, and R2 results show
an overall good fitting of LEPB predictions to the input GPS features set.

5.5 LightGBM Features Reduction
As we observe from the previous results, DENSITY_PIXELS, DENSITY_CCAS, and GPS fea-
tures sets return very similar modeling results. Accordingly, from a representation efficiency
point of view, all three approaches provide good fitting results with good prediction accuracy.
However, are the features used by each representation approach as efficient as possible, or there is
a redundancy that can be eliminated? LightGBM can produce a features importance list based on
the number of splits in which each feature has been used. The more splits obtained, the more
important the feature is. This list can be presented in descending order, where the most important

Table 11 LEPB PE quantifiers using LightGBM and density-CCAS features set.

Learning phase RMS (nm) δEWD (nm) R2 (%)

Training 0.589 0.310 98.66

Testing 0.645 0.350 98.40

Fig. 18 LEPB predictions results using LightGBM and GPS features set: (a) LightGBM with GPS
training and (b) LightGBM with GPS testing.

Table 12 LEPB PE quantifiers using LightGBM and GPS features set.

Learning phase RMS (nm) δEWD (nm) R2 (%)

Training 0.569 0.296 98.75

Testing 0.640 0.343 98.41
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features display at the top and the least important features at the bottom. Features with zero splits
were not employed by the model in any splits and can be safely removed without affecting the
modeling behavior or degrading the accuracy. Table 13 summarizes the feature reduction in each
representation approach based on the LightGBM model feature importance by splits.

DENSITY_PIXELS has no zero split features, indicating that for LEPB modeling through
a regression-based ML modeling, a high-resolution density pixel is needed. Moreover, this
information aligns with the fact that the information gain in each pixel is quite high, and each
pixel is employed efficiently by the model, with no possible further feature reductions.
DENSITY_CCAS has 13 features with zero splits (−5%), aligning with the fact that CCAS has
a type of information redundancy, as highlighted by Geng et al. in Ref. 24, since a dense number
of sampling points implies circles and axes closer to each other, which accordingly implies
redundancy. Figure 19 shows the training and testing LEPB prediction results (μm), and
Table 14 shows the PE quantifiers after applying features reduction to the DENSITY_CCAS
features set. These results are almost identical to the results in Fig. 17 and Table 11 using the
full set of DENSITY_CCAS features. GPS has 15 features with zero splits (−7%) and all the
reduced features are dimensional, which means these dimensional properties features were not
important for LEPB modeling. Figure 20 shows the training and testing LEPB prediction results

Table 13 Features reduction based on LightGBM splits.

Features set
Full set

features count
Zero splits

features count
Reduced set
features count

Features
reduction (%)

DENSITY_PIXELS 261 0 261 0

DENSITY_CCAS 262 13 249 ∼ −5

GPS 218 15 203 ∼ −7

Fig. 19 LEPB predictions results using LightGBM and Density-CCAS reduced features set:
(a) LightGBM with CCAS reduced features training and (b) LightGBM with CCAS reduced features
testing.

Table 14 LEPB predictions error quantifiers using LightGBM and density-CCAS reduced
features set.

Learning phase RMS (nm) δEWD (nm) R2 (%)

Training 0.590 0.310 98.66

Testing 0.640 0.350 98.40
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(μm), and Table 15 shows the PE quantifiers after applying features reduction to the GPS features
set. These results are almost identical to the results in Fig. 18 and Table 12 using the full set of
GPS features.

As we can observe from the results in Fig. 17, Table 11, Fig. 19, and Table 14 for
DENSITY_CCAS representation, and Fig. 18, Table 12, Fig. 20, and Table 15 for GPS repre-
sentation, there is almost no degradation in either modeling accuracy or error quantifiers after
applying the features reduction.

Fig. 20 LEPB predictions results using LightGBM and GPS reduced features set: (a) LightGBM
with GPS reduced features training and (b) LightGBM with GPS reduced features testing.

Table 15 LEPB predictions error quantifiers using LightGBM and GPS reduced features set.

Learning phase RMS (nm) δEWD (nm) R2 (%)

Training 0.571 0.297 98.74

Testing 0.643 0.344 98.40

Table 16 Summary of features counts, features utilization, and predictions error quantifiers.

Feature
set

Features
count

Features
utilization

(%)

Training phase Testing phase

RMS
(nm)

δEWD
(nm)

R2

(%)
RMS
(nm)

δEWD
(nm)

R2

(%)

Full features sets

Density
pixels

261 100 0.538 0.284 98.89 0.616 0.338 98.53

Density
CCAS

262 100.38 0.589 0.310 98.66 0.645 0.350 98.40

GPS 218 83.52 0.569 0.296 98.75 0.640 0.343 98.41

Reduced features sets

Density
CCAS

249 95.40 0.590 0.310 98.66 0.640 0.350 98.40

GPS 203 77.78 0.571 0.297 98.74 0.643 0.344 98.40
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Table 16 summarizes: (1) features counts, (2) features utilization referenced to density pixels
(since it is the only features set that was not reduced), and (3) PE quantifiers of the LightGBM
model. The error quantifiers are very similar in all the evaluation experiments, which indicates
good model fitting to the LEPB predictions, and after features reduction, we can see that
GPS features produced almost the same modeling quality (training: RMS ¼ 0.571 nm,
δEWD ¼ 0.297 nm, and R2% ¼ 98.74%, and testing: RMS ¼ 0.643 nm, δEWD ¼ 0.344 nm, and
R2% ¼ 98.40%) with −22.22% fewer features compared to the full features set of density pixels
approach, and −22.26% fewer features compared to the full features set of the density CCAS
approach.

5.6 Further Discussion
In this study, we presented LEPB modeling using GPS direct one-to-one mapping geometrical
features. However, GPS features are not limited only to the LEPB problem and can be incorpo-
rated further to model other systematic defects, such as pinching and bridging.

6 Conclusions
In this paper, we presented a novel edge-based engine (GPS) that extracts direct one-to-one direc-
tional geometrical features describing a POI and its surrounding context of patterns in the layout,
with feature extraction runtime less than density pixels and density CCAS approaches. We also
presented efficient LEPB predictions using the LightGBM ML model with density pixels, den-
sity CCAS, and GPS as IC layout pattern representation, with a prediction RMS error <1 nm. We
employed LightGBM features importance by splits to conduct feature reductions on the used
approaches. The reduced features of GPS produced almost the same modeling quality (training:
RMS ¼ 0.571 nm, δEWD ¼ 0.297 nm, and R2% ¼ 98.74%, and testing: RMS ¼ 0.643 nm,
δEWD ¼ 0.344 nm, and R2% ¼ 98.40%) with −22.22% fewer features compared to the full fea-
tures set of the density pixels approach, and −22.26% fewer features compared to the full features
set of the density CCAS approach. Compared to litho simulations, the obtained calibrated models
can be used to provide fast and accurate predictions of the amounts of pull-back or extensions
introduced at LEs near vias, eliminating a major contributor to systematic IC yield loss.

Code, Data, and Materials Availability
The data utilized in this study were obtained from Siemens EDA and contains company proprietary
information.

Acknowledgments
The authors would like to sincerely thank Shelly Stalnaker for the editorial assistance in this paper.

References
1. G. Huang et al., “Machine learning for electronic design automation: a survey,” ACM Trans. Design Autom.

Electron. Syst. 26(5), 40 (2021).
2. D. Ding et al., “AENEID: a generic lithography-friendly detailed router based on post-RET data learning and

hotspot detection,” in Proc. ACM/IEEE Des. Autom. Conf. (DAC’11), ACM, pp. 795–800 (2011).
3. D. Ding et al., “High performance lithographic hotspot detection using hierarchically refined machine

learning,” in 16th Asia and South Pac. Des. Autom. Conf. (ASP-DAC 2011), pp. 775–780 (2011).
4. Z. Xie et al., “RouteNet: routability prediction for mixed-size designs using convolutional neural network,” in

Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD 2018) (2018).
5. R. Liang et al., “DRC hotspot prediction at sub-10nm process nodes using customized convolutional net-

work,” in Proc. ACM Int. Symp. Phys. Des. (ISPD’20) (2020).
6. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmenta-

tion,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).
7. P. Selvam et al., “Deep learning-based hotspot prediction of via printability in process window corners,”

Proc. SPIE 11614, 116140X (2021).
8. J.-Y. Wuu et al., “Rapid layout pattern classification,” in IEEE/ACM Asia and South Pac. Des. Autom. Conf.

(ASPDAC), pp. 781–786 (2011).

Hamed et al.: Geometrical positioning surveying-based features for BEOL. . .

J. Micro/Nanopattern. Mater. Metrol. 023401-24 Apr–Jun 2023 • Vol. 22(2)

https://doi.org/10.1145/3451179
https://doi.org/10.1145/3451179
https://doi.org/10.1145/2024724.2024902
https://doi.org/10.1145/3240765.3240843
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1117/12.2583662


9. L. Wang et al., “Retargeting-aware design for manufacturability (DFM) checks using machine learning,”
Proc. SPIE 12052, 1205211 (2022).

10. H. Yang et al., “Imbalance aware lithography hotspot detection: a deep learning approach,” Proc. SPIE
10148, 1014807 (2017).

11. M. Shin and J. Lee, “Accurate lithography hotspot detection using deep convolutional neural networks,”
J. Micro/Nanolithogr. MEMS MOEMS 15(4), 043507 (2016).

12. Y. Jiang et al., “Efficient layout hotspot detection via binarized residual neural network ensemble,” in
Proc. IEEE Computer-Aided Design of Integrated Circuits and Systems (2021).

13. H. Yang et al., “Layout hotspot detection with feature tensor generation and deep biased learning,” in
Proc. ACM/IEEE Des. Autom. Conf. (DAC’17) (2017).

14. T. Matsunawa et al., “A new lithography hotspot detection framework based on AdaBoost classifier and
simplified feature extraction,” Proc. SPIE 9427, 94270S (2015).

15. T. Matsunawa, S. Nojima, and T. Kotani, “Automatic layout feature extraction for lithography hotspot
detection based on deep neural network,” Proc. SPIE 9781, 97810H (2016).

16. H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning in lithography hotspot detection with infor-
mation-theoretic feature optimization,” in IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), pp. 1–8
(2016).

17. R. Dawar et al., “Random forest-based robust classification for lithographic hotspot detection,” J. Micro/
Nanolithogr. MEMS MOEMS 18(2), 023501 (2019).

18. H. Yang et al., “Detecting multi-layer layout hotspots with adaptive squish patterns,” in Proc. IEEE/ACM
Asia and South Pac. Des. Autom. Conf. (ASPDAC’19) (2019).

19. H. Yang et al., “Hotspot detection using squish-net,” Proc. SPIE 10962, 109620S (2019).
20. H. Yang et al., “GAN-OPC: mask optimization with lithography-guided generative adversarial nets,” in

Proc. ACM/IEEE Des. Autom. Conf. (DAC’18) (2018).
21. T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with hierarchical Bayes model,”

J. Micro/Nanolithogr. MEMS MOEMS 15, 021009 (2015).
22. S. Choi, S. Shim, and Y. Shin, “Machine learning (ML)-guided OPC using basis functions of polar Fourier

transform,” Proc. SPIE 9780, 97800H (2016).
23. X. Xu et al., “A machine learning based framework for sub-resolution assist feature generation,” in Proc.

ACM Int. Symp. Phys. Des. (ISPD’16) (2016).
24. H. Geng et al., “SRAF insertion via supervised dictionary learning,” in Proc. IEEE/ACM Asia and South Pac.

Des. Autom. Conf. (ASPDAC’19) (2019).
25. W. Ye et al., “LithoGAN: end-to-end lithography modeling with generative adversarial networks,” in Proc.

ACM/IEEE Design Autom. Conf. (DAC’19) (2019).
26. Y. Lin et al., “Machine learning for mask/wafer hotspot detection and mask synthesis,” Proc. SPIE 10451,

104510A (2017).
27. F. Pedregosa et al., “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830

(2011).
28. M. Abadi et al., “TensorFlow: a system for large-scale machine learning,” in 12th USENIX Symp. Oper. Syst.

Des. and Implement. (OSDI ’16), 2016, https://tensorflow.org.
29. S. Kaufman, S. Rosset, and C. Perlich, “Leakage in data mining: formulation detection and avoidance,” in

Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. and Data Mining, pp. 556–563 (2011).
30. H. Hegazy, A. Hamed, and O. Elsewefy, “Edge-based camera for characterizing semiconductor layout

designs,” US Patent 1017147B2 (2021).
31. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication, Chapter 8, John

Wiley & Sons, Ltd. (2007).
32. N. B. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit manufacturing,”

PhD dissertation, University of California at Berkeley (1998).
33. W. Ciou et al., “Machine learning optical proximity correction with generative adversarial networks,”

J. Micro/Nanopatterning, Mater. Metrol. 21(4), 041606 (2022).
34. H. Lee et al., “Thread scheduling for GPU-based OPC simulation on multi-thread,” Proc. SPIE 10587,

105870P (2018).
35. L. Breiman, “Random forests,” Mach. Learn. 45, 5–32 (2001).
36. H. M. Gomes et al., “A survey on ensemble learning for data stream classification,” ACM Comput. Surv.

50(2), 23 (2017).
37. Scikit-learn documentation, “Scikit-learn ensemble regressors,” 2023, https://scikit-learn.org/stable/modules/

ensemble.html#.
38. K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of categorical variable encoding techniques

for neural network classifiers,” Int. J. Comput. Appl. 175(4), 7–9 (2017).
39. LightGBM documentation by Microsoft Corporation, 2023, https://lightgbm.readthedocs.io/en/latest/

Features.html#optimal-split-for-categorical-features.

Hamed et al.: Geometrical positioning surveying-based features for BEOL. . .

J. Micro/Nanopattern. Mater. Metrol. 023401-25 Apr–Jun 2023 • Vol. 22(2)

https://doi.org/10.1117/12.2614460
https://doi.org/10.1117/12.2258374
https://doi.org/10.1117/1.JMM.15.4.043507
https://doi.org/10.1109/TCAD.2020.3015918
https://doi.org/10.1145/3061639.3062270
https://doi.org/10.1117/12.2085790
https://doi.org/10.1117/12.2217746
https://doi.org/10.1145/2966986.2967032
https://doi.org/10.1117/1.JMM.18.2.023501
https://doi.org/10.1117/1.JMM.18.2.023501
https://doi.org/10.1145/3287624.3288747
https://doi.org/10.1145/3287624.3288747
https://doi.org/10.1117/12.2515172
https://doi.org/10.1145/3195970.3196056
https://doi.org/10.1117/1.JMM.15.2.021009
https://doi.org/10.1117/12.2219073
https://doi.org/10.1145/3287624.3287684
https://doi.org/10.1145/3287624.3287684
https://doi.org/10.1145/3316781.3317852
https://doi.org/10.1145/3316781.3317852
https://doi.org/10.1117/12.2282943
https://tensorflow.org
https://tensorflow.org
https://doi.org/10.1117/1.JMM.21.4.041606
https://doi.org/10.1117/12.2295696
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3054925
https://scikit-learn.org/stable/modules/ensemble.html#
https://scikit-learn.org/stable/modules/ensemble.html#
https://scikit-learn.org/stable/modules/ensemble.html#
https://scikit-learn.org/stable/modules/ensemble.html#
https://doi.org/10.5120/ijca2017915495
https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features
https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features
https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features
https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features
https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features


40. D. Micci-Barreca, “A preprocessing scheme for high-cardinality categorical attributes in classification and
prediction problems,” ACM SIGKDD Explor. Newsl. 3(1), 27–32 (2001).

41. G. Ke et al., “LightGBM: a highly efficient gradient boosting decision tree,” in 31st Conf. Neural Inf.
Process. Syst. (NIPS 2017), Long Beach, California (2017).

42. W. D. Fisher. “On grouping for maximum homogeneity,” J. Am. Stat. Assoc. 53(284), 789–798 (1958).
43. T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf.

Knowl. Discov. and Data Mining, ACM, pp. 785–794 (2016).
44. LightGBM documentation by Microsoft Corporation, 2023, https://lightgbm.readthedocs.io/en/latest/

Features.html#leaf-wise-best-first-tree-growth.

Ahmed Hamed Fathi Hamed received his BSc and MSc degrees in electronics and commu-
nications engineering from Cairo University in 2007 and 2015, respectively. He is currently pur-
suing his PhD in integrated circuits from Ain Shams University, Cairo, Egypt. He has many
publications in the fields of RET, OPC, and DFM in addition to a U.S. patent. Ahmed is currently
a senior product engineering manager at Calibre Semi-Manufacturing Solutions, Siemens EDA
Egypt. He has been a member of SPIE since 2013.

Hazem Hegazy received his Bachelor of Science degree in 1997 followed by MSc degree in
2003 and PhD in 2009 all from Ain Shams University, Cairo, Egypt. Currently, he holds the
position of product management director at Siemens EDA Egypt. He has been with Siemens
EDA for 23 years. He has published many technical papers and articles in addition to many
granted US patents.

Omar El-Sewefy received his BSc and MSc degrees from Ain Shams University, Cairo, Egypt,
in 2008 and 2015, respectively. He is a field application engineer at Siemens Industry Software
Inc. With 12 years of experience in design physical verification solutions and semi-
conductor manufacturing solutions, his industry experience covers semiconductor resolution
enhancement techniques (RET), source mask optimization, design rule checks, and silicon pho-
tonics physical verification. He has been a member of SPIE since 2009.

Mohamed Dessouky received his BSc and MSc degrees in electrical engineering from the
University of Ain Shams, Cairo, Egypt, in 1992 and 1995, respectively, and his PhD in electrical
engineering from the University of Paris VI, Paris, France, in 2001. He has co-authored
50+ papers in refereed journals and conferences. He was a visiting professor at the University
of Paris VI in 2002 and 2004. He holds three US patents.

Ashraf Salem received his BSc (Hons.) and MSc degrees in computer engineering from
Ain Shams University, Cairo, Egypt, in 1983 and 1987, respectively, and his PhD in computer
engineering from the University of Joseph Fourier, Grenoble, France, in 1992. He is currently
a professor with the Department of Computer and Systems Engineering, Ain Shams University.

Hamed et al.: Geometrical positioning surveying-based features for BEOL. . .

J. Micro/Nanopattern. Mater. Metrol. 023401-26 Apr–Jun 2023 • Vol. 22(2)

https://doi.org/10.1145/507533.507538
https://doi.org/10.1080/01621459.1958.10501479
https://lightgbm.readthedocs.io/en/latest/Features.html#leaf-wise-best-first-tree-growth
https://lightgbm.readthedocs.io/en/latest/Features.html#leaf-wise-best-first-tree-growth
https://lightgbm.readthedocs.io/en/latest/Features.html#leaf-wise-best-first-tree-growth
https://lightgbm.readthedocs.io/en/latest/Features.html#leaf-wise-best-first-tree-growth
https://lightgbm.readthedocs.io/en/latest/Features.html#leaf-wise-best-first-tree-growth

