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1 Introduction

Space-time adaptive processing (STAP) can effectively suppress strong ground/sea clutter and
improve the moving target indication performance for airborne/spaceborne radar systems.1

In full-dimension STAP algorithms, however, a large number of independent and identically
distributed (I.I.D.) training snapshots are required to yield an average signal-to-clutter-noise
ratio (SCNR) loss of ∼3 dB.2 Moreover, full-dimension STAP algorithms have a high system
complexity and require many memory elements.3 In practical applications, it is generally difficult
to satisfy these requirements.

To date, many algorithms have been proposed to overcome the drawbacks of full-dimension
STAP algorithms. Reduced-rank STAP algorithms can reduce the clutter space while maintain-
ing the performance of fully STAP algorithms.4,5 Consequently, the required number of snap-
shots can be reduced. However, eigenvalue decomposition is used, which is computationally
expensive. To reduce the computational expense and the number of training snapshots simulta-
neously, some typical reduced-dimension STAP algorithms have been proposed, such as the
joint domain localized approach, auxiliary channel processing, etc.6–8 However, the nonadaptive
selection of the reduced-dimension projection matrix, which relies on intuitive experience,
results in a performance degradation to a certain extent.2

The sparsity of the filter coefficients in STAP has recently been studied, and the theoretical
framework for sparsity-based STAP algorithms using the l1-regularized constraint, which is the
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so-called least absolute shrinkage and selection operator (LASSO), has been established.9–12 The
classical algorithms for solving the LASSO problem adopt convex optimization, e.g., the interior
point algorithm, to obtain a sparse solution. The complexity of the algorithms can be very high
when the size of the problem is large, which is not pragmatic in practice. To effectively solve
the optimization problem, the l1-regularized recursive least-squares STAP (RLS-STAP) algo-
rithm,13 the l1-regularized least-mean-square STAP algorithm,14 and the homotopy-STAP
algorithm15 have been proposed. Compared with conventional STAP methods, sparsity-based
STAP techniques have been shown to provide high resolution and exhibit better performance
than conventional STAP algorithms.16

The alternating direction method of multipliers (ADMM) is a technique used to combine
the decomposability of dual ascent with the rapid convergence speed of the method of
multipliers.17,18 This technique is well suited for solving the optimization problems of the l1

constraint, particularly large-scale problems.19 The ADMM technique can converge within a
few tens of iterations, which is acceptable in practical use.20 In this study, according to the
optimal criterion of minimizing the mean-square error, we propose an algorithm based on the
ADMM technique to solve the l1-regularized STAP problem. The proposed method provides
better performance with a small number of I.I.D. training snapshots and without a large number
of calculations.

The reminder of this paper is organized as follows. The system model of the generalized
side-lobe canceler (GSC) form of the sparsity-based STAP is introduced in Sec. 2. In Sec. 3,
the theory of the ADMM algorithm is introduced, and the l1-regularized ADMM-STAP algo-
rithm is proposed. The associated optimization problem is formulated and solved analytically.
The performance improvement of the proposed algorithm is shown in Sec. 4. Section 5 provides
the conclusion.

Notation: In this paper, a variable, a column vector, and a matrix are represented by a lower-
case letter, a lowercase bold letter, and a capital bold letter, respectively. The operations of
transposition, complex conjugation, and conjugate transposition are denoted by ð·ÞT, ð·Þ�,
and ð·ÞH, respectively. The symbol ⊗; denotes the Kronecker product, and the symbol k · kn
denotes the ln-norm operator. EðxÞ denotes the expected value of x, jxj indicates the absolute
value of x, and ðxÞþ ≜ maxð0; xÞ. signð·Þ is the component-wise sign function.13

2 Background and Problem Formulation

2.1 System Model

The STAP technique is known for its ability to suppress clutter energy interference while
detecting moving targets. Consider an airborne radar system equipped with a uniform linear
array (ULA) consisting of N receiving elements, as shown in Fig. 1. The radar transmits K

Fig. 1 Radar platform flies at speed vp along the azimuth direction (x -axis). Without loss of gen-
erality, the center of elements is defined as the origin of coordinates. hp is the flight height, and ϕ
represents the AOA of the clutter patch in the isorange clutter ring.
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identical pulses at a constant pulse repetition frequency (PRF) fr ≜ 1∕Tr during a coherent
processing interval (CPI), where Tr is the pulse repetition interval. The received signal from
the range bin of interest is represented as x ¼ xt þ xc þ n, where xt is the target vector, xc is
the clutter vector, and n is the thermal noise vector with noise power σ2n on each channel and
pulse. The space-time clutter vector can be represented as21

EQ-TARGET;temp:intralink-;e001;116;674xc ¼
XNc

n¼1

σc;nvðfd;n; fs;nÞ; (1)

where Nc denotes the number of clutter patches in the range bin of interest and σc;n denotes the
random complex reflection coefficient. fd;n ≜ 2vpTr sin ϕn∕λ and fs;n ≜ d sin ϕn∕λ are the
Doppler frequency and spatial frequency for the n’th clutter patch, respectively, where λ is
the wavelength and d is the innersensor spacing of the ULA. vðfd;n; fs;nÞ ∈ CNK×1 is the
space-time steering vector, which is defined as a Kronecker product of the temporal and spatial
steering vectors, i.e., vðfd; fsÞ ¼ vdðfdÞ ⊗ vsðfsÞ, where

EQ-TARGET;temp:intralink-;e002;116;548

vdðfdÞ ¼ ½ 1 expðj2πfdÞ · · · exp½j2πfdðK − 1Þ� �T
vsðfsÞ ¼ ½ 1 expðj2πfsÞ · · · exp½j2πfsðN − 1Þ� �T: (2)

The target vector is xt ¼ σtvðfd;t; fs;tÞ, where fd;t ≜ 2vpTr sin ϕt∕λþ 2vtTr∕λ and

fs;t ≜ d sin ϕt∕λ. vt is the radial velocity of the moving target, and ϕt represents the angle
of arrival (AOA) of the target. Note that in the following, vðfd;t; fs;tÞ is rewritten as vt for
convenience.

To clearly illustrate how the STAP method works, the GSC form of the STAP method is
shown in Fig. 2. B ∈ CNK×ðNK−1Þ is the signal blocking matrix, which satisfies BHvt ¼ 0 and
BBH ¼ I. Generally, B can be obtained by singular value decomposition (SVD):

EQ-TARGET;temp:intralink-;e003;116;405½U S V � ¼ svdðvHt Þ; B ¼ Vð∶; 2∶NKÞ: (3)

After the transformation by b ¼ BHx ∈ CðNK−1Þ×1, NK − 1 clutter data are available. In the
full-dimension STAP, all the data are selected to cancel the clutter. The output is

EQ-TARGET;temp:intralink-;e004;116;344y ¼ d0 − ωH
b b; (4)

where d0 ¼ vHt x and ωb ¼ R−1
b rbd. Rb ¼ EðbbHÞ is the clutter covariance matrix, and

rbd ¼ Eðbd�0Þ is the cross-correlation vector between d0 and b. The output clutter power can
be computed as

EQ-TARGET;temp:intralink-;e005;116;268P ¼ vHt Rxvt − rHbdR
−1
b rbd; (5)

where Rx ¼ EðxxHÞ is the input covariance matrix. The output SCNR can be expressed as

EQ-TARGET;temp:intralink-;e006;116;222ξ ¼ NMjαj2
vHt Rxvt − rHbdR

−1
b rbd

: (6)

(a) (b)

Fig. 2 (a) GSC form of the conventional STAP and (b) GSC form of the sparsity-based STAP.
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Maximizing the output SCNR is equivalent to maximizing the detection probability. However,
Rb and rbd are unknown in practice, and the secondary training snapshots are required to
estimate these parameters.15 The best performance can be achieved if there are sufficient I.I.D.
training snapshots. However, in many practical cases, it is impossible to obtain sufficient snap-
shots, and the performance degrades significantly.

2.2 Sparsity-Based STAP

According to the STAP theory, it has been shown that the rank of clutter covariance is far lower
than the DOFs of the system.22,23 Consequently, some RR-STAP and RD-STAP algorithms have
been used to reduce the filter length, i.e., the filter coefficient vector obtained by full-dimension
STAP is sparse.14 Hence, in the GSC form of the sparsity-based STAP algorithm (see Fig. 2), the

filter coefficient vector ωb can be replaced by ω̃b ¼ Vωb, where V¼ΔdiagðvÞ and v ∈ CNK−1

denote a sparse vector. Then, we obtain

EQ-TARGET;temp:intralink-;e007;116;563z ¼ VHb ∈ CðNK−1Þ×1: (7)

The output of the sparsity-based STAP is

EQ-TARGET;temp:intralink-;e008;116;518yr ¼ d0 − ωH
b z ¼ ½ 1 ωH

b − ωH
bV

H �
�
y
b

�
: (8)

Hence, the output clutter power for the sparsity-based STAP can be computed as

EQ-TARGET;temp:intralink-;e009;116;467Pr ¼ vHt Rxvt − rHbdR
−1
b rbd þ εHRbε; (9)

where ε ¼ ωb − ω̃b is the weight error vector caused by the sparsity constraint. Note that the
target signal power is not affected by the sparsity constraint. The output SCNR can be expressed
as

EQ-TARGET;temp:intralink-;e010;116;404ξr ¼
NMjαj2

vHt Rxvt − rHbdR
−1
b rbd þ εHRbε

: (10)

Hence, the aim is to minimize the mean-square error εHRbε. The objective function of the
minimization problem can be rewritten as

EQ-TARGET;temp:intralink-;e011;116;333εHRbε ¼ rHbdR
−1
b rbd − rHbdω̃b − ω̃H

b rbd þ ω̃H
bRbω̃b: (11)

ω̃b is sparse, i.e., most of its elements are considerably smaller than the others. Hence, the
minimization problem can be expressed as

EQ-TARGET;temp:intralink-;e012;116;277 min − rHbdω̃b − ω̃H
b rbd þ ω̃H

bRbω̃b þ λkω̃bk0; (12)

where λ is the regularization parameter for regulating the sparseness of ω̃b. However, the
l0-norm problem is nonconvex. Consequently, it is intractable even for optimization problems
with a moderate size. Equation (12) can be further programmed as an LASSO algorithm

EQ-TARGET;temp:intralink-;e013;116;209 min − rHbdω̃b − ω̃H
b rbd þ ω̃H

bRbω̃b þ λkω̃bk1: (13)

In contrast to Eq. (12), Eq. (13) is convex and can be solved by convex optimization algorithms,
such as the interior point method (IPM). The complexity of IPM-STAP can be very high when
the size of the problem is large, which is not pragmatic in practice.
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3 Proposed l1-Regularized STAP Algorithm

3.1 Variable Splitting

In general, the ADMM algorithm can converge rapidly when a modest-accuracy result is accept-
able. Fortunately, this is the case for the parameter estimation problem in the STAP application
that we are considering. For statistical problems, solving a parameter estimation problem to
a very high accuracy often yields little improvement.19 The ADMM-STAP algorithm is based
on the algorithm of variable splitting, i.e., we split the variable ω̃b into a pair of variables, say,
ω̃b and z, and add a constraint that the two variables are equal. Moreover, the objective function
is split as the sum of two functions, and then we minimize the sum of the two functions.
Explicitly, Eq. (13) can be rewritten in the ADMM form

EQ-TARGET;temp:intralink-;e014;116;597min
ω̃b;z

rHbdω̃b − ω̃H
b rbd þ ω̃H

bRbω̃b þ λkzk1 s:t: ω̃b ¼ z: (14)

The problems of Eqs. (13) and (14) are clearly equivalent. In many cases, it is easier to solve the
constrained problem Eq. (14) than the original unconstrained problem. As in the method of
multipliers, the augmented Lagrangian function is formed as19,20

EQ-TARGET;temp:intralink-;e015;116;519Lρðω̃b; z; yÞ ¼ −rHbdω̃b − ω̃H
b rbd þ ω̃H

bRbω̃b þ λkzk1 þ ðρ∕2Þkω̃b − zk22 þ yHðω̃b − zÞ; (15)

where ρ > 0 is the augmented Lagrangian parameter and y is a vector of Lagrange multipliers.

3.2 l1-Regularized ADMM-STAP

Define the residual and the scaled dual variable as r ¼ ω̃b − z and d ¼ ð1∕ρÞy, respectively.
Then, we have

EQ-TARGET;temp:intralink-;e016;116;409ðρ∕2Þkω̃b − zk22 þ yHðω̃b − zÞ ¼ ðρ∕2Þkrk22 þ yHr ¼ ðρ∕2Þkrþ dk22 − ðρ∕2Þkdk22: (16)

Subsequently, the ADMM-STAP algorithm can be rewritten in a convenient form
EQ-TARGET;temp:intralink-;e017;116;361

ω̃ðkþ1Þ
b ¼ arg min

ω̃b

ð−rHbdω̃b − ω̃H
b rbd þ ω̃H

bRbω̃b þ ðρ∕2Þkω̃b − zðkÞ þ dðkÞk22Þ;

zðkþ1Þ ¼ arg min
z

ðλkzk1 þ ðρ∕2Þkω̃ðkþ1Þ
b − zþ dðkÞk22Þ;

dðkþ1Þ ¼ dðkÞ þ rðkþ1Þ; (17)

where rðkÞ ¼ ω̃ðkÞ
b − zðkÞ is the residual at the k’th iteration and dðkÞ ¼ dð0Þ þP

k
j¼1 r

ðjÞ is the
summation of the residuals. In the first line of Eq. (17), the objective is to minimize a strictly
convex quadratic function, and the solution can be easily obtained as

EQ-TARGET;temp:intralink-;e018;116;237ω̃ðkþ1Þ
b ¼ ðRb þ ρIÞ−1½rbd þ ρðzðkÞ − dðkÞÞ�: (18)

As mentioned, Rb and rbd are unknown in practice, and they can be estimated as Rb ¼P
L
l¼1 bðlÞbHðlÞ∕L and rbd ¼

P
L
l¼1 bðlÞd�0ðlÞ∕L, where L denotes the number of snapshots

that are used. Moreover, bðlÞ ¼ BHxðlÞ and d0ðlÞ ¼ vHt xðlÞ, where xðlÞ denotes the l’th
space-time snapshot.13–15

The solution of Eq. (18) can be obtained directly, i.e., noniteratively. However, it is imprac-
tical because the inversion of ðRb þ ρIÞ has a high computational complexity of O½ðNK − 1Þ3�.
Note that, according to Fig. 3, the clutter covariance matrix constructed by the training snapshots
with regard to the current detecting snapshot can be written as

EQ-TARGET;temp:intralink-;e019;116;101Rb ¼ R
⌢

b þ
X4
m¼1

ð−1ÞmbmbHm
L

; (19)
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where R
⌢

b is constructed by the training snapshots with regard to the previous detecting

snapshot. Denote Pð0Þ ¼ ðR⌢b þ ρIÞ−1; then, according to the matrix inversion lemma,24 we
obtain

EQ-TARGET;temp:intralink-;e020;116;435PðmÞ ¼ Pðm−1Þ −
Pðm−1ÞbmbHmPðm−1Þ
L

ð−1Þm þ bHmPðm−1Þbm
; m ¼ 1;2; 3;4: (20)

It is clear that Pð4Þ ¼ ðRb þ ρIÞ−1. Hence, the computational complexity can be reduced to
O½8ðNK − 1Þ2�. A full analysis of the computational complexity is presented in Table 1.

In the second line of Eq. (17), the z-update can be represented as

EQ-TARGET;temp:intralink-;e021;116;348zðkþ1Þ
i ¼ arg min

zi
½λjzij þ ðρ∕2Þðzi − w̃ðkþ1Þ

i − dðkÞi Þ2�: (21)

Although the absolute value function is not differentiable, a simple closed-form solution can
easily be obtained. Explicitly, the solution is

EQ-TARGET;temp:intralink-;e022;116;282zðkþ1Þ
i ¼ Sλ∕ρðw̃ðkþ1Þ

i þ dðkÞi Þ; (22)

where SλðzÞ is the soft-thresholding operator. The soft-thresholding operator is essentially
a shrinkage operator, which moves a point toward zero.

In the ADMM-STAP algorithm, ω̃b and z are updated alternately, which accounts for the
term alternating direction. The reasonable stopping criteria are that the primal and dual residuals
must be small,

Fig. 3 Selection of I.I.D. training snapshots. The guard bands are used to guarantee that the
training snapshots contain no components of the moving target.

Table 1 Computational complexity.

Algorithm Complex multiplications Complex additions

SMI-STAP O½ðNK − 1Þ3� O½ðNK − 1Þ3�

RLS-STAP ½4ðNK Þ2 − 2 NK − 1�L ½3ðNK Þ2 − 3 NK �L

OCD-STAP ½4ðNK Þ2 − 5 NK þ 2�L ½3ðNK Þ2 − 4 NK þ 1�L

ADMM-STAP ðM þ 8ÞðNK − 1Þ2 þ 4 NK − 4 ðM þ 8ÞðNK − 1Þ2 þ 4MðNK − 1Þ − 4

Qin et al.: Fast l1-regularized space-time. . .
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EQ-TARGET;temp:intralink-;e023;116;498kω̃ðkÞ
b − zðkÞk2 ≤ εpri and kρðzðkÞ − zðk−1ÞÞk2 ≤ εdual; (23)

where εpri and εdual are thresholds that are chosen by absolute and relative criteria

EQ-TARGET;temp:intralink-;e024;116;460

εpri ¼
ffiffiffiffi
p

p
εabs þ εrel maxfkω̃ðkÞ

b k2; kzðkÞk2g;
εdual ¼

ffiffiffi
n

p
εabs þ εrelkyðkÞk2: (24)

A reasonable value for εrel is 10−4 − 10−3, and the choice of εabs depends on the scale of the
typical variable values. The detailed iterative procedure of ADMM-STAP is shown in Fig. 4.

3.3 Analysis of Convergence

A proof of the convergence result is presented in this section. First, we begin our proof by
presenting the following theorem.

Theorem 1 (Eckstein–Bertsekas):25 Consider the problem

EQ-TARGET;temp:intralink-;e025;116;309min
u

f1ðuÞ þ f2ðvÞ s:t: v ¼ Gu ; (25)

in the case where the functions f1ð·Þ and f2ð·Þ are closed, proper, and convex and G has a full
column rank. Let fηk ≥ 0; k ¼ 0; 1; · · · g and fγk ≥ 0; k ¼ 0; 1; · · · g be two sequences such that

EQ-TARGET;temp:intralink-;e026;116;245

X∞
k¼0

ηk < 0 and
X∞
k¼0

γk < 0: (26)

Assume that there are three sequences fuk; k ¼ 0;1; · · · g, fvk; k ¼ 0;1; · · · g, and
ftk; k ¼ 0;1; · · · g that satisfy

EQ-TARGET;temp:intralink-;e027;116;173

ηk ≥ kukþ1 − arg min
u

ff1ðuÞ þ ðρ∕2ÞkGu − vk − tkk22gk

γk ≥ kvkþ1 − arg min
v

ff2ðvÞ þ ðρ∕2ÞkGukþ1 − v − tkk22gk

tkþ1 ¼ tk − ðGukþ1 − vkþ1Þ: (27)

Then, if Eq. (25) has an optimal solution u†, the sequence fukg converges to this solution, i.e.,
uk → u†.

Fig. 4 The detailed iterative procedure of ADMM-STAP.
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First, since Eq. (14) is a particular instance whenG ¼ I, the full-rank condition in Theorem 1
can be satisfied. Second, it is clear that f1ðω̃bÞ ¼ −rHbdω̃b − ω̃H

b rbd þ ω̃H
bRbω̃b and f2ðzÞ ¼

2λkzk1 in Eq. (14) are closed, proper, and convex. Moreover, the sequences fω̃ðkÞ
b g, fzðkÞg,

and fuðkÞg generated by Eq. (17) satisfy the conditions of Eq. (27) in a strict sense
(ηk ¼ γk ¼ 0). Hence, the convergence is guaranteed.

3.4 Analysis of Computational Complexity

A comparison of the computational complexities of four STAP algorithms, namely, the conven-
tional sample matrix inversion (SMI) STAP,2 l1-regularized RLS-STAP,

14 l1-regularized online
coordinate descent (OCD) STAP,26 and the proposed ADMM-STAP algorithms, is presented in
Table 1. The computational complexity is measured by the number of complex multiplications
and additions. As shown in Table 1, the ADMM-STAP algorithm has a computational complex-
ity of O½ðM þ 8ÞðNK − 1Þ2�, where M is the number of iterations. According to the simulation
in Sec. 4, the algorithm can converge to an acceptable solution within a few tens of iterations,
i.e., M þ 8 would be less than 4L and NK − 1. Hence, the ADMM-STAP algorithm has the
lowest level of computational complexity.

4 Simulation Results

The simulation parameters for the ground moving target indication application are listed in
Table 2: a radar system equipped with a side-looking ULA is employed, and the elements
are spaced half a wavelength apart, i.e., d ¼ λ∕2. Additive noise is modeled as spatially
and temporally independent complex Gaussian noise with zero mean and unit variance.
fr ¼ 4vp∕λ; hence, β ¼ 2vpTr∕d ¼ 1. All the results are obtained from the average of 100
independent Monte–Carlo simulations.

4.1 Setting of Regularization Parameter

The regularization parameter provides a tradeoff between the SCNR steady-state performance
and the convergence speed. Although it is clear that the value of λ should be proportional to
the noise power and be inversely proportional to the rank of the clutter covariance matrix,
it is still difficult to determine the optimal value. Adjusting the regularization parameter
adaptively is an interesting research area (e.g., Refs. 13 and 14). However, this area is not
the main focus of our paper. In this paper, the regularization parameter is selected from a
fixed set Ω ¼ f0.1; 1;10; 50g.

Table 2 Simulation parameters for airborne radar.

Parameter Notation Value Unit

Antenna array spacing d λ∕2 m

Pulse repetition frequency f r 2314 Hz

Carrier frequency f c 1.24 GHz

Array element number N 10 —

CPI pulse number K 10 —

Bandwidth — 10 MHz

Platform velocity vp 140 m/s

Platform height hp 8000 m

Signal-to-noise ratio SNR 0 dB
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The output SCNR versus the number of snapshots that are used with different values of the
regularization parameter λ is shown in Fig. 5. In this simulation, we assume that the signal of
the moving target impinges the array from a DOA of 90 deg and that the radial velocity of
the moving target vt is 28 m∕s (the Doppler frequency of the moving target is nearly
231 Hz). The results in Fig. 5 indicate that (i) the value of λ is crucial to the output SCNR
performance, and there is a reasonable range of values, i.e., 1 ≤ λ ≤ 10, that can improve
the convergence speed and the output SCNR steady-state performance simultaneously;
(ii) the output SCNR is degraded when λ is too large since the filter weight vector is shrunk
to zero; and (iii) the output SCNR performance is not considerably improved when λ is too
small. In this case, the output SCNR performance is nearly similar to that of the conventional
STAP algorithm.

The output SCNR performance versus the Doppler frequency of the moving target at a DOA
of 90 deg is shown in Fig. 6. The range of potential Doppler frequency is from −500− to 500 Hz,
and 60 snapshots are used to optimize the filter vector. The same conclusion can be obtained.
This figure shows that the ADMM-STAP algorithm with 1 ≤ λ ≤ 10 provides a satisfactory
output SCNR performance.

(a) (b)

Fig. 6 Output SCNR performance versus Doppler frequency with different regularization param-
eters, and the range of Doppler frequency is from −500 to 500 Hz. (a) CNR ¼ 20 dB and
(b) CNR ¼ 40 dB.

(a) (b)

Fig. 5 Output SCNR versus the number of used snapshots with different regularization param-
eters. (a) CNR ¼ 20 dB and (b) CNR ¼ 40 dB.
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The number of iterations with different values of λ is shown in Fig. 7. As shown, if we choose
λ from an appropriate range (0.5 ≤ λ ≤ 10), then the ADMM-STAP algorithm can converge
rapidly within a few tens of iterations, which is acceptable in practice. Otherwise, the number
of iterations increases significantly, and the iteration output cannot converge to the optimal
solution leading, to a performance degradation to a certain extent.

4.2 Comparison with Other Algorithms

In this section, we will compare the output SCNR performance of our proposed algorithm with
that of IPM-STAP, OCD-STAP, and RLS-STAP algorithms. The regularization parameter λ is set
to 1 for all the algorithms, and the other parameters are the same as in the previous simulations.
The output SCNR performances versus the number of used snapshots and the target Doppler
frequency are compared in Figs. 8 and 9. As shown in these figures, we can see that (i) the output
SCNR performance of the IPM-STAP algorithm is superior to that of the RLS-STAP and
OCD-STAP algorithms. However, it is achieved at a high computational cost and (ii) the output
SCNR performance of the ADMM-STAP algorithm can outperform that of the IPM-STAP
algorithm, which supports our previous conclusion that optimizing the problem of parameter
estimation to a high accuracy generally yields no improvement.

(a) (b)

Fig. 8 Output SCNR versus the number of used snapshots when the radial velocity of the moving
target is 28 m∕s. (a) CNR ¼ 20 dB and (b) CNR ¼ 40 dB.

(a) (b)

Fig. 7 Number of iterations versus the value of λ. The radial velocity of the moving target is
28 m∕s, and 60 snapshots are used in the simulation. (a) CNR ¼ 20 dB and (b) CNR ¼ 40 dB.
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5 l1-Regularized STAP with Mountaintop Data

The performance of the l1-regularized STAP approaches is verified here using the Mountaintop
data set (data No. t38pre01v1) acquired with the experimental radar system RSTER (radar sur-
veillance technology experimental radar) sponsored by the Advanced Research Projects Agency.
The Mountaintop program is devoted to supporting the mission requirements of next-generation
airborne early warning platforms and to supporting the evaluation of STAP algorithms. The
antenna for the system is a 5-m wide by 10-m high horizontally polarized array composed of
14 column elements. The CPI pulse number is 16, the antenna array spacing is 0.333 m, the PRF
is 625 Hz, the carrier frequency is 435 MHz, and the bandwidth is 500 kHz. The transmit beam is
steered to illuminate a mountain range (a large clutter scatter).

The data set is divided into two subsets in our experiment. The first subset, including 100
snapshots, is used to train the STAP filters. The second subset, including 100 snapshots, is used
to test the performance. Two simulated moving targets are added to the test data subset. The
signal of the first target impinges the array from a DOA of −25 deg, and the Doppler frequency
is 62.5 Hz. The signal of the second target impinges the array from a DOA of 20 deg, and the
Doppler frequency is 187.5 Hz. Hence, the first target can essentially be regarded as a ground
moving vehicle in the mountain, and the second target can be regarded as an aircraft near the
mountain. The minimum variance distortionless response (MVDR) spectra of the two subsets are
shown in Fig. 10.

The improvement factor (IF) performance, which is defined as the ratio of the output SCNR
to the input SCNR, is investigated in Fig. 11. The regularization parameter λ is set to 1 for all the

Second target

First target

(a)
Angle (deg) Angle (deg)

(b)

Fig. 10 (a) MVDR spectrum of the training subset and (b) MVDR spectrum of the test subset.

(a) (b)

Fig. 9 Output SCNR performance versus Doppler frequency with 60 snapshots, and the range of
Doppler frequency is from −500 to 500 Hz. (a) CNR ¼ 20 dB and (b) CNR ¼ 40 dB.
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algorithms. As shown, the IF performance of the proposed ADMM-STAP approach substantially
outperforms that of the other approaches. Hence, the effectiveness of the proposed approach is
confirmed by an experimental multichannel radar system RSTER.

6 Conclusions

In this paper, we proposed a sparsity-based approach based on an l1-regularized constraint to
accelerate the convergence speed of STAP. The optimization problem with an additional
l1-regularized constraint was solved using the ADMM, and the detailed iterative procedure
of ADMM-SATP was derived. Through the examples, it was demonstrated that the proposed
method can effectively decrease the required number of secondary snapshots and provide better
performance than the l1-regularized OCD-STAP and l1-regularized RLS-STAP methods.
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