
Kernel linear representation:
application to target recognition in
synthetic aperture radar images

Ganggang Dong
Na Wang
Gangyao Kuang
Yinfa Zhang



Kernel linear representation: application to target
recognition in synthetic aperture radar images

Ganggang Dong,a,* Na Wang,a Gangyao Kuang,a and Yinfa Zhangb
aNational University of Defense Technology, College of Electronics Science and Engineering,

Street YaWaChi 137#, Changsha 410073, China
bSchool of Xi’an Communication, Xi’an 710106, China

Abstract. A method for target classification in synthetic aperture radar (SAR) images is pro-
posed. The samples are first mapped into a high-dimensional feature space in which samples
from the same class are assumed to span a linear subspace. Then, any new sample can be
uniquely represented by the training samples within given constraint. The conventional methods
suggest searching the sparest representations with l1-norm (or l0) minimization constraint.
However, these methods are computationally expensive due to optimizing nondifferential objec-
tive function. To improve the performance while reducing the computational consumption, a
simple yet effective classification scheme called kernel linear representation (KLR) is presented.
Different from the previous works, KLR limits the feasible set of representations with a much
weaker constraint, l2-norm minimization. Since, KLR can be solved in closed form there is no
need to perform the l1-minimization, and hence the calculation burden has been lessened.
Meanwhile, the classification accuracy has been improved due to the relaxation of the constraint.
Extensive experiments on a real SAR dataset demonstrate that the proposed method outperforms
the kernel sparse models as well as the previous works performed on SAR target recognition.
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1 Introduction

Synthetic aperture radar (SAR) has been widely used in many fields, such as environmental
monitoring, surveillance, and reconnaissance, due to its ability to work 24-hour a day and
its robustness with inclement weather conditions. Automatic target recognition (ATR) is a fun-
damental topic of SAR image interpretation. It has been studied extensively in the past two
decades, yet it is still an open problem. Particularly, it is challenging to perform target recog-
nition in the extended operating conditions,1–3 in which a single operational parameter is sig-
nificantly different between the images used for training and those used for testing. A typical
SAR ATR system identifies the unknown through three sequential stages:4–6 detection,7 discrimi-
nation,8 and classification.9 First, targets as well as various clutter false alarms (e.g., buildings,
trees, streetlights, etc.) are detected. Then, natural and manmade clutter false alarms are rejected
in the discrimination stage, followed by a classifier to give the identity. Only the final procedure,
classification, is studied in this article.

Sparse and redundant signal representations have recently drawn much interest in computer
vision, signal and image processing,10 due to the fact that signals and images of interest can be
sparse or compressible with respect to a given dictionary. In Ref. 11, Huang and Aviyente pro-
pose the sparse representation (SR) over a redundant basis set for signal classification. The
sparse coefficients are obtained by optimizing an objective function that includes the measure-
ment of the reconstruction error and sparsity level. In Ref. 12, Wright et al. generalize the SR
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technique for robust face recognition. By assuming that a linear subspace can be spanned using
the samples belonging to the same class, any new sample can be recovered by a linear combi-
nation of the training samples from all classes. To search for the most parsimonious represen-
tation, the constraint, l1-norm minimization, is imposed on the encoding coefficients. Similarly,
an SR technique has been introduced to the ATR framework. In Ref. 13, Chen et al. propose a
sparsity-based algorithm for automatic target detection in hyperspectral imagery. The test pixel is
linearly reconstructed by the training pixels with a sparsity constraint, and the characteristics of
coefficients on reconstruction are used to make a decision. To circumvent pose estimation and
the multiple preprocessing procedures, Ref. 14 performs target classification in SAR images with
the SR method. They explain the advantage of SR from the perspective of manifolds’ learning. In
Ref. 9, Patel et al. present a block sparsity-based classification method, in which the inherent
block structure of encoding coefficients has been exploited with a group sparsity constraint.
Although great performances have been reported in these works, they may be not effective
if the dataset is not linearly separable in the original space.

To cover the shortage of the linear SR techniques, some works transform the samples into a
new feature space induced by a nonlinear mapping. However, it is infeasible to solve the pre-
sented problem directly due to the implicit nonlinear mapping. In Ref. 15, Gao et al. relax the
nonconvex problem via alternately computing sparse coefficients and a learning redundant dic-
tionary. In Ref. 16, Yin et al. propose another approach to search the most compact representa-
tions. Both the test and the training samples in feature space are projected into a novel space by
left multiplying a linear operator. In Ref. 17, Zhang et al. circumvent the explicit computation in
feature space with a dimension reduction strategy. However, these methods are computationally
expensive due to optimizing a nondifferential objective function. Moreover, in the feature space,
there is actually no need to impose the strong sparsity constraint on the representations. A much
weaker constraint, l2-minimization, can play the same role but with less computational
consumption.18,19

To improve the performance while alleviating the computational cost, a new classification
method named the kernel linear representation (KLR) is presented in this article. All the samples
are first mapped into an implicit feature space by a nonlinear mapping. The classification is
then implemented with respect to the data in the feature space. In the feature space, it is assumed
that the samples belonging to the same class approximately span a linear subspace, thus any
new sample can be represented by a linear combination of all the training samples. To uniquely
recover the test sample, the conventional methods impose the strong sparsity constraint on
the encoding coefficients. The idea in this article is to limit the feasible set of the representation
with a much weaker constraint, l2-norm minimization. Due to the convexity and differentiabil-
ity, the presented problem can be solved in closed form. Thus, the complicated procedure to
optimize the strong sparsity constraint problem has been circumvented. The unknown is
identified according to the characteristics of representations on reconstruction. Compared
with the forerunners’ works,15–17 the proposed method performs much faster due to the
analytic solution, and the accuracy has been improved because of the relaxation of the
constraints.

Although the proposed method is of broad interest to object recognition in general, the stud-
ies and experimental results in this article are confined to high-resolution SAR target recognition
(i.e., MSTAR dataset). The proposed method does not rely on any preprocessing procedure, such
as pose estimation, noise reduction, and binary-value. It is robust to small variations in configu-
ration, pose, and depression angles.

2 Methodology

2.1 Sparse Representation

SR aims to succinctly recover the signal over a given dictionary. It is based on the assumption
that a linear subspace can be spanned by samples belonging to the same class. Given sufficient
training samples of the i’th class, Xi ¼ ½xi;1; xi;2; : : : ; xi;ni � ∈ Rm×ni , where m is the data dimen-
sion stacked as a column. Any new sample y ∈ Rm from the same class will approximately lie in
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the linear span of the training samples associated with the i’th class, y ¼ xi;1αi;1þ
xi;2αi;2 þ : : : þ xi;niαi;ni , where αi ¼ ½αi;1; αi;2; : : : ; αi;ni �T ∈ Rni is the coefficients. Since the
membership of the new sample is initially unknown, a dictionary has been defined by concat-
enating the n training samples of all k distinct classes, X ¼ ½X1;X2; : : : ;Xk� ∈ Rm×n, where
n ¼ P

k
i¼1 ni. Then, the linear representation of y can be rewritten in terms of all training samples

y ¼ X1α1 þ X2α2þ · · · þXkαk ¼ Xα; (1)

where α ¼ ½α1; α2; : : : ; αk�T ∈ Rn is the representation vector whose entries are zeros except those
associated with the i’th class in theory. Usually, we consider that the underdetermined systems
(m < n), and its solution is not unique. The popular methods are to search the sparsest solution
by l0-norm minimization12

min
α
kαk0 s:t: ky − Xαk2 ≤ ε; (2)

where k · k0∶Rn ↦ R counts the nonzero entries and ε is the error tolerance. In Eq. (2), the objec-
tive function is to measure the sparsity level, whereas the constrained term is to control the
reconstruction error (i.e., fidelity). Due to the nonconvex and nondifferential properties, solving
Eq. (2) is nondeterministic polynomial (NP)-hard. Thanks to the development of compressed sens-
ing theories, the solution of the l0-norm minimization problem is equal to the one of the l1-norm
minimization if the solution is sparse enough20

min
α
kαk1 s:t: ky − Xαk2 ≤ ε: (3)

At present, many algorithms have been presented to solve Eq. (3), as comprehensively
reviewed in Ref. 21. Then, the test sample is classified as the class whose training samples
can generate the minimum residual

min
i¼1;: : : k

fky − Xiα̂ik22g: (4)

2.2 Kernel Sparse Representation

In the previous works,9,12,14 although great performance has been reported, they may be not
effective if the dataset is not linearly separable originally. To improve the performance, it is
natural to cast the data into a new feature space in which the data separability between different
classes has been enhanced. Suppose the feature space (denote by I) is induced by the nonlinear
mapping, ϕ∶Rm ↦ I, and the kernel function, κ∶Rm × Rm ↦ R, is defined as the inner product
in the feature space

κðxi; xjÞ ¼ hϕðxiÞ;ϕðxjÞi; (5)

where h·; ·i is the inner product. Commonly used kernel functions include a polynomial kernel, a
sigmoidal kernel, and a Gaussian radial basis function (RBF).

In the feature space, it is assumed that the samples belonging to the same class approximately
span a linear subspace. Thus, any new sample ϕðyÞ ∈ I can be recovered over all the training
samples in the feature space

ϕðyÞ ¼ ϕðXÞα; (6)

where ϕðXÞ ¼ ½ϕðX1Þ;ϕðX2Þ; : : : ;ϕðXkÞ�; ϕðXiÞ ¼ ½ϕðxi;1Þ;ϕðxi;2Þ; : : : ;ϕðxi;niÞ�, ϕðxi;jÞ ∈ I;
α ∈ Rn is the representation vector. To create the unique solution of Eq. (6), the previous works
impose a strong sparsity constraint (i.e., l1-norm minimization) on the representations

min
α
kαk1 s:t: kϕðyÞ − ϕðXÞαk2 ≤ ε:
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2.3 Kernel Linear Representation

The previous works15–17 compute the sparsest representation with an l1-norm minimization con-
straint. The idea here is to limit the feasible set of the representations with a much weaker con-
straint, l2-norm minimization

min
α
kαk2 s:t: kϕðyÞ − ϕðXÞαk2 ≤ ε: (8)

Which is also equal to the unconstrained problem

min
α
ffðαÞ ¼ kϕðyÞ − ϕðXÞαk2 þ λkαk2g: (9)

Obviously, Eq. (9) can be solved in closed form due to the convex and differential objective
functions. By unfolding the fidelity term, it can be rewritten as

min
α

8<
:

fðαÞ ¼ ½ϕðyÞ − ϕðXÞα�T ½ϕðyÞ − ϕðXÞα� þ λkαk2
¼ ϕðyÞTϕðyÞ þ αTϕðXÞTϕðXÞα − 2ϕðyÞTϕðXÞαþ λkαk2
¼ 1þ αTΦα − 2Φyαþ λαTα

9=
;; (10)

where Φy ¼ ½κðy; x1Þ; κðy; x2Þ; : : : ; κðy; xnÞ�T , and

Φ ¼

0
B@

κðx1; x1Þ : : : κðx1; xnÞ
..
. . .

. ..
.

κðxn; x1Þ · · · κðxn; xnÞ

1
CA

is the kernel Gram matrix. It is apparent that the objective function of Eq. (10) is tractable since it
only refers to the matrix operation of finite dimension, Φy ∈ Rn and Φ ∈ Rn×n, rather than deal-
ing with a possibly infinitely dimensional dictionary, ϕðXÞ. An important hint of this formulation
is that the computation of Φy and Φ only requires the dot products. It is, therefore, feasible to
solve Eq. (10) with Mercer kernel tricks22 regardless of the nonlinear mapping ϕ. With the kernel
trick [Eq. (5)], searching the coefficients over the dictionary, ϕðXÞ, is then converted to compute
the representations in terms of the kernel Gram matrix Φ. So, the explicit computation in the
feature space has been circumvented. Following the mathematic rules, we conduct the partial
differential of the representation

∂fðαÞ
∂α

¼ 2Φα − 2Φy þ 2λα: (11)

By setting the derivative to be zero, ½∂fðαÞ∕∂α� ¼ 0, it is easy to obtain the analytic solution

α̂ ¼ ðΦþ λIÞ−1Φy; (12)

where I is the identity matrix whose dimension is the same as kernel Gram matrix.
Similarly, the decision is made by the characteristics of the representations on reconstruction

min
i¼1;: : : ;k

fkΦy −Φδiðα̂Þk22g; (13)

where δið·Þ∶Rn ↦ Rn is the mapping to pick out the coefficients associated with the i’th
class.

2.4 Validation

The ability to determine whether the input sample is valid or not is crucial for the classifier to
work in real-world situations. A typical target recognition system, for example, should reject the
civil vehicles, buildings, and trees. In the proposed framework, the validation judgment is in
terms of the reconstruction error. That is, the algorithm accepts or rejects a test sample
based on how small the minimum residual is. Given a solution α̂ found by Eq. (12), the residual
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vector can be built as e ¼ ½e1; e2; : : : ; ek� ∈ Rk, where ei ¼ kΦy −Φδiðα̂Þk22, i ¼ 1; : : : ; k is the
residual associated with the i’th class. To measure the quality of the test sample, an index named
the normalized minimum residual (NMR) has been defined as

NMRðα̂Þ ¼ min
i¼1;: : : ;k

� kΦy −Φδiðα̂Þk22PC
j¼1 kΦy −Φδjðα̂Þk22

�
: (14)

For any coefficient vector α̂, the smaller the NMRðα̂Þ is, the better the quality of the test
sample is, and hence belief that the test sample is a valid one is higher, vice versa. Given a
threshold τ ∈ ð0; 1Þ, a test sample is accepted as valid if NMRðα̂Þ ≤ τ, and otherwise it is
rejected as the outlier. Only the test sample that passes the criterion can be assigned a class label.

The framework of the proposed method has been pictorially summarized in Fig. 1, where it
has been divided into three sequential stages. The first stage is devoted to data preparation. All
the samples are mapped into the feature space with a nonlinear mapping. In the second stage, the
training samples are used to formulate the redundant dictionary to encode an input test sample as
a linear combination of them via the l2-norm minimization. The last stage contributes to the
decision. The identity is assigned to the test sample if it passes the rejection criterion [Eq. (14)],
otherwise it is determined to be an outlier.

3 Experimental Results and Discussions

This section demonstrates the performance of the proposed method on MSTAR database, a col-
lection done using a 10-GHz spotlight SAR sensor with a one-foot resolution. For each target,
images are captured at different depression angles over a full 0 to 359 deg range of aspect view.
To ensure the accuracy and efficiency, a wide variety of experiments are performed, including
configuration variations, pose and depression angle variations, outlier rejection, etc. In all the
experiments, the center 80 × 80 pixels patch is used as the input. The cropped images are first
subsampled by a factor of ρ, and the subsampled images are then mapped into the feature space.
The subsampling factor is chosen from a given interval ρ ¼ f1∕400; 1∕256; 1∕100; 1∕
64g, which corresponds to sizes 4 × 4, 5 × 5, 8 × 8, and 10 × 10 pixels. Gaussian RBF,
κðxi; xjÞ ¼ expð−γkxi − xjk22Þ, is employed as the kernel function, and the width parameter,
γ, is assigned as 200, 50, 10, and 5 for the subsampled image of 4 × 4, 5 × 5, 8 × 8, and
10 × 10 pixels, respectively. The baseline methods include linear SR method12 and kernel sparse
techniques, i.e., Gao et al.’s method15 [Kernel sparse representation (KSR)], Yin et al.’s method16

[Kernel sparse representation projection, (KSRP)], and Zhang et al.’s method17 [Kernel sparse
representation with dimension reduction (KSRDR)], linear support vector machine (SVM) and
kernel SVM.

3.1 Parameter Setting

In the proposed method, there is a free parameter to be set, the regularizer λ. It is used to balance
the fidelity and “sparsity.” First, it circumvents the difficulty when the kernel Gram matrix, Φ, is
not invertible, so the solution is more stable. Second, it introduces a particular “sparsity” to the
representations, and the sparsity is much weaker than the l1-norm minimization. To determine λ,
five targets, BMP2, BTR70, T72, T62, and BTR60, are employed for several groups of

Fig. 1 The block diagram of the proposed algorithm.
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experiments. The number of aspect view images available for different targets is shown in
Table 1, and the recognition rates with different parameters are drawn in Fig. 2.

As can be seen from Fig. 2, when λ decreased from 0.08 to 0.006, the accuracy first improves
and the subsequently degrades. The peak value happens at λ ¼ 0.02 or 0.03. Though different
rates have been obtained, the accuracy varies very slightly. Thus, we can come to the conclusion
that the proposed method is insensitive to the regularizer. It is, however, necessary for stable
matrix inversion. Hereafter, the parameter will be fixed as λ ¼ 0.02.

3.2 Configuration Invariance

This subsection examines the invariance of different algorithms under different configurations.
Three basic targets, T72, BMP2, and BTR70, have been utilized. For T72 and BMP2, there are
three variants with different serial numbers and small structural modifications, SN_132, SN_812,
SN_s7, SN_9563, SN_9566, and SN_c21. Only the standard configurations, SN_132 (T72),
SN_9563 (BMP2), and SN_c71 (BTR70), at a 17-deg depression angle are used for training,
whereas all configurations at a 15-deg depression angle are used for testing, as detailed in
Table 2. The performance obtained by different algorithms is listed in Table 3, where the former
item gives the recognition rates, and the latter item shows the run-times in seconds.

As can be seen from Fig. 3, kernel-based methods, KSR, KSRP, KSRDR, and KLR, sig-
nificantly outperform the linear one, SR. The average improvements of 12.18%, 14.65%,
13.86%, and 19.65% have been obtained by KSR, KSRP, KSRDR, and KLR against SR.
This is because the dataset is not linearly separable in the original space, and it can be remedied
by mapping the data into a new feature space. The proposed method achieves the best recog-
nition rates, i.e., 0.7728, 0.8593, 0.9406, and 0.9575, and the average improvements of 7.48%,
5.0%, 5.79%, 8.04%, and 4.71% have been obtained against KSR, KSRP, KSRDR, SVM, and
KSVM. The good performance can be attributed to two characteristics. First, the high-order
structure of data has been exploited with the nonlinear mapping. Second, the discriminative
ability of the encoding coefficients has been enhanced due to the relaxation of constraints.

Table 1 The number of aspect view images available for different targets in parameter setting,
where the training samples are in bold.

Angle BMP2 T72 BTR70 T62 BTR60 SUM

17° 233 232 233 299 256 1253

15° 587 582 196 273 195 1833
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Fig. 2 The recognition rates of kernel linear representation with different parameters.
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The computational cost, measured by run-times, is pictorially shown in Fig. 4. It can be
observed that the proposed method performs much faster than the linear SR and kernel SR meth-
ods, and slower than SVM and KSVM. For the low-dimensional classification (16-D), KLR
achieves the highest recognition rate, 0.7728, with a runtime of 4.5 s, and it is 4.4, 7.7,
12.8, and 6.2 times faster than SR, KSR, KSRP, and DSRDR. For the high-dimensional clas-
sification (100-D), KLR again obtains the highest recognition rate, 0.9575, with a run-time of
4.5 s, and it is 8, 34, 36, and 6.2 times faster than SR, KSR, KSRP, and DSRDR. This is because
the complicated procedure to l1-norm minimization has been circumvented.

3.3 Comparison with Conventional Approaches to Synthetic Aperture Radar
Target Recognition

The past two decades have witnessed great developments in SAR target recognition, and a wide
variety of techniques are presented, such as template matching methods,1 subspace [principal

Table 2 The number of aspect views available for targets in configuration invariance.

Angle

BMP2 T72 BTR70

SUM[SN_9563] SN_9566 SN_c21 [SN_132] SN_812 SN_s7 [SN_c71]

17° 233 – – 232 – – 233 698

15° 195 196 196 196 195 191 196 1365

Table 3 Performance of various methods in configuration invariance.

Dim. SR SVM KSVM KSR KSRP KSRDR KLR

4 × 4 0.5692∕20 0.7018∕0.5 0.6901∕0.5 0.7413∕35 0.7582∕58 0.7626∕28 0.7728∕4.5

5 × 5 0.6373∕22 0.8095∕0.5 0.7926∕0.5 0.8131∕56 0.8087∕107 0.8007∕28 0.8593∕4.5

8 × 8 0.7399∕32 0.8241∕0.7 0.9164∕0.7 0.8219∕108 0.8717∕155 0.8659∕28 0.9406∕4.5

10 × 10 0.7978∕36 0.8732∕0.8 0.9428∕0.8 0.8549∕155 0.8915∕165 0.8695∕28 0.9575∕4.5
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Fig. 3 The recognition rates of different methods in configuration invariance experiment.
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component analysis (PCA), linear discriminant analysis (LDA), etc.] methods,23,24 transform
[discrete cosine transform (DCT), etc.],25 Fourier domain techniques,26 etc. This subsection com-
pares the proposed method with the previous works performed on SAR target recognition.
Following the prototype of the above experiment, BMP2, BTR70, and T72 have been utilized.
The classification accuracies obtained using different algorithms are shown in Table 4, where
TM denotes the template matching method with the templates at 10-deg increments and a mask
individualizing the targets.

As can be observed from Table 4, the template matching method achieves a similar perfor-
mance to subspace (PCA) and transform (DCT) based methods (0.9040 versus 0.9076, 0.9055).
All of them outperform another supervised classification technique, LDA. This is because there
are only three different classes in the training dataset, which results in very lower dimensional
projected data (i.e., 2-D) with LDA. The Fourier domain algorithm outperforms the TM-, PCA-,
DCT-, and LDA-based methods. The proposed method, KLR achieves the highest recognition
rate, 0.9575, and the improvements of 5.35%, 4.99%, 7.5%, 5.2%, and 4.03% have been
obtained compared with TM, PCA, LDA, DCT, and FT. The experimental results are mainly
due to the advantage of nonlinear mapping, which maps the data into a feature space where the
data separability between different classes has been enhanced. Furthermore, the classification
with collaborative representation of all training samples also contributes to the good perfor-
mance, i.e., KLR recovers the test sample with training samples of all the classes, while the
others reconstruct the test sample using several relevant ones.

3.4 Outlier Rejection

In the “open world” classification issues, the classifier should be capable of rejecting the unknown
objects which do not belong to the training set classes (i.e., outlier). Thus, this subsection considers
the rejection of confusers and clutters. Three military vehicles, BMP2 (SN_9563), BTR70
(SN_c21), and T72 (SN_132), are used as the standard targets, whereas D7 (a bulldozer) is speci-
fied as the confuser to be rejected. Samples of the standard target and the confuser are illustrated in
Fig. 5. Following the previous works,3,26,27 the 1159 “target-like” clutter chips are generated from
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4×4
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Fig. 4 The runtimes of different methods in configuration invariance.

Table 4 Comparison with several conventional approaches to synthetic aperture radar target
recognition.

TM PCA LDA DCT FT KLR#1 KLR#2

Accuracy 0.9040 0.9076 0.8825 0.9055 0.9172 0.9406 0.9575

Dong et al.: Kernel linear representation: with application to target recognition. . .

Journal of Applied Remote Sensing 083613-8 Vol. 8, 2014



the 100 scene images of MSTAR clutters, and 200 ones of them are used as the clutters to be
rejected. A small portion of the clutter chips are demonstrated in Fig. 6. The total number of
chip images available for standard targets and the outliers are listed in Table 5. By tuning the
threshold τ through a range of values in ð0; 1Þ, a receiver operating characteristic (ROC)
curve, which plots the false reject rate against false accept rate for all possible thresholds, can
be created. The ROC curve visually reflects the classifier’s ability to determine whether a
given test sample is in the training dataset. The results of confuser rejection and clutter rejection
experiments have been drawn in Figs. 7 and 8, where the performance of four different algorithms,
KLR, KSR, KSRP, and KSRDR, have been evaluated.

As can be seen from Figs. 7 and 8, it is more difficult to determine the confuser (D7) than the
clutter. This is because the confuser D7 is a manmade object. It produces similar scattering cen-
ters to three standard targets, as easily observed from Fig. 5. The clutters, however, are mainly
composed of buildings, trees, roads, streetlights, etc. Their scattering centers are much more
random and dispersive than typical tactical ground targets, as demonstrated in Fig. 6.
Moreover, whether in the confuser rejection experiment or in the clutter rejection experiment,
the proposed method significantly outperforms all the reference algorithms, KSR, KSRP,
and KSRDR.

3.5 10-Object Recognition

To further evaluate the performance, a group of more challenging experiments have been sub-
sequently performed. Several different kinds of targets, main battle tank (T72 and T62), armored
personnel carrier (BTR70 and BTR60), bulldozer (D7), truck (ZIL131), antiaircraft gun
(ZSU_23/4), armored truck (BMP2 and BRDM_2), and howitzer (2S1), are employed, as

BMP2 BTR70 T72 D7

Fig. 5 Samples of the standard target and confuser.

Fig. 6 Samples of the clutter chips.

Table 5 The number of chip images available for the rejection experiment.

BMP2 BTR70 T72 D7 Clutter

Training 233 233 232 – –

Testing 195 196 195 274 200
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Fig. 7 Receiver operating characteristic (ROC) curves for confuser rejection.
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Fig. 8 ROC curves for clutter rejection.

Table 6 The number of aspect view images available for different targets in 10-object recognition.

Angle BMP2 T72 BTR70 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4 SUM

17° 233 232 233 256 299 298 299 299 299 299 2747

15° 587 582 196 195 274 274 274 273 274 274 3203

Table 7 The results of 10-object recognition experiment.

Dim. SR SVM KSVM KSR KSRP KSRDR KLR

4 × 4 0.4889 0.5176 0.6646 0.6781 0.6584 0.6219 0.7499

5 × 5 0.5332 0.6665 0.8005 0.7399 0.7519 0.7322 0.8476

8 × 8 0.5816 0.7258 0.8979 0.7764 0.8239 0.7848 0.9191

10 × 10 0.6453 0.7986 0.9244 0.8204 0.8534 0.8261 0.9428
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detailed in Table 6. The recognition rates of different algorithms are listed in Table 7, with the
corresponding diagram shown in Fig. 9.

The results conform to the above experiments. Higher accuracies are obtained in high-
dimensional space (100-D and 64-D) than in low-dimension space (25-D and 16-D).
Compared to the linear models (i.e., SR and SVM), better performance has been obtained
using kernel models (KSVM, KSR, KSRP, KSRDR, and KLR). This is due to the nonlinear
mapping which improves the data separability. As for KLR, the recognition rates of 0.7499,
0.8476, 0.9191, and 0.9428 have been obtained, which outperforms all the baseline methods.
Two sides contribute to the experimental results. The improvement in accuracy against KSVM
results from the advantage of collaborative representation, whereas the elevation in accuracy than
KSR, KSRP, and KSRDR is due to the relaxation of constraints.

4 Conclusion

Recent years have witnessed a considerable resurgence of interest in sparse signal representation.
This popularity comes from the fact that signals in most problems can be well recovered over a
small set of basis vectors. However, these methods are computationally expensive due to opti-
mizing the nondifferential objective function. To improve the performance while boosting the
speed, a new classification algorithm named KLR is presented in this article, and it is applied to
target recognition in high-resolution SAR images. The classification is implemented with respect
to the data in a feature space induced by a nonlinear mapping. Since the mapping is of implicit
form, it is infeasible to solve the presented problem directly. To produce the unique solution, the
conventional methods impose strong sparsity constraint on the representation. Our idea in this
article is to limit the feasible set of the representation with a much weaker constraint, l2-norm
minimization. Thus, the complicated procedure to optimizing sparsity constraint problem has
been converted to a simple least-square fitting. Due to the convexity and differentiability,
the new problem can be solved in closed form. Therefore, the computational cost has been sig-
nificantly lessened, and the classification accuracy has been simultaneously improved. Extensive
experiments, including configuration invariance, depression angle invariance, outlier rejection,
and 10-object recognition, have been carried out on the MSTAR dataset. The experimental
results demonstrate that the proposed method performs much faster than various reference algo-
rithms. Moreover, it achieves much higher recognition rates than the kernel sparse models, as
well as the conventional approaches to SAR target recognition. The improvement in accuracy
against the previous works performed on SAR target recognition is due to the advantage of
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Fig. 9 The recognition rates of different methods in 10-object recognition experiment.
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collaborative representation, whereas the elevation in speed over kernel sparse models results
from the relaxation of constraints.

The proposed method refers to matrix inverse for computing the encoding coefficients. Thus,
it is difficult to deal with a large-scale classification task due to the bottleneck of realizing a high-
dimensional matrix inverse. Future attention will be paid to covering the shortage with dictionary
learning skills. Another intriguing question for future work is whether the presented framework
can be useful for other stages of ATR, for example, automatic target detection and
discrimination.
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