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Abstract

Significance: Signal contamination is a major hurdle in functional near-infrared spectroscopy
(fNIRS) of the human head as the NIR signal is contaminated with the changes corresponding to
superficial tissue, therefore occluding the functional information originating from the cerebral
region. For continuous wave, this is generally handled through linear regression of the shortest
source-detector (SD) distance intensity measurement from all of the signals. Although phase
measurements utilizing frequency domain (FD) provide deeper tissue sampling, the use of the
shortest SD distance phase measurement for regression of superficial signal contamination can
lead to misleading results, therefore suppressing cortical signals.

Aim: An approach for FD fNIRS that utilizes a short-separation intensity signal directly to
regress both intensity and phase measurements, providing a better regression of superficial signal
contamination from both data-types, is proposed.

Approach: Simulated data from realistic models of the human head are used, and signal regres-
sion using both intensity and phase-based components of the FD fNIRS is evaluated.

Results: Intensity-based phase regression achieves a suppression of superficial signal contami-
nation by 68% whereas phase-based phase regression is only by 13%. Phase-based phase regres-
sion is also shown to generate false-positive signals from the cortex, which are not desirable.

Conclusions: Intensity-based phase regression provides a better methodology for minimizing
superficial signal contamination in FD fNIRS.
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1 Introduction

Continuous wave (CW) functional near-infrared spectroscopy (fNIRS)-based optical imaging is
a neuroimaging technique used to non-invasively monitor functional activity in the brain by
tomographic reconstruction of the hemodynamic activity. These reconstructions can be used
in clinical applications such as patient monitoring,1 psychology studies,2,3 and functional brain
mapping.4 It is a relatively inexpensive technology and nonionizing in nature as compared with
the alternative neuroimaging tools such as magnetic resonance imaging, computed tomography,
or positron emission tomography. CW-NIRS-based imaging relies on the measurements of the
light intensity, using multi-distance overlapping source-detector (SD) channels. NIR light
sources placed on the scalp emit light into the head that traverses through the scalp, skull,
cerebro-spinal fluid (CSF), and cerebral regions, and the back-scattered light is measured by
detectors placed on the scalp at certain distances from the sources. The spectrally varying optical
properties of the medium that contribute to variation of the measured light intensities are then
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reconstructed using a diffusion theory-based inverse model, from which 3D recovery of optical
properties of the medium is often termed as diffuse optical tomography (DOT).

A major challenge to any fNIRS-based technique monitoring cerebral hemodynamic activity
is the contamination of the NIR signal with hemodynamic changes arising in superficial regions,
namely, skin and scalp.1,5 This has been shown to be reduced significantly for CW-NIRS by
incorporating short SD distance (about 10 to 15 mm) in the measurement setup.6 As the
short-distance measurements mainly contain the superficial signal, it is directly regressed from
all of the remaining measurements to reduce the superficial tissue contamination from the data.
In DOT, the overlapping measurements of the multi-SD setup, together with the varying depth
sensitivity based on SD distances, allow the spatial reconstruction of the hemodynamic changes,
therefore, potentially separating the contributions from deep and shallow regions.7 However, it is
common practice to apply superficial signal regression with the DOT algorithm prior to the
reconstruction step to significantly improve the 3D spatial recovery and the recovered contrast
of focal activations.8

While CW-DOT is robust, inexpensive, and easy to use,9 the localization of focal activations
is usually hindered due to the intensity-only measurements. However, at a relatively higher
instrumentation cost as compared with CW systems, the use of a modulated NIR light typically
at 100 to 200 MHz, known as a frequency domain (FD) system, enables the measurement of the
phase shift of the detected NIR light after traversing through the tissue that corresponds to the
average path length of the photon travelled. Recent work in FD-DOT10 has demonstrated the
more uniform sensitivity of the phase measurements toward deeper tissue that results in a more
accurate recovery of focal activations in the brain with a reduction of 59% in localization error
and 21% effective resolution as compared with CW-DOT. To further demonstrate the benefit of
utilizing phase measurements from an FD system, the sensitivities (Jacobian) of intensity (log
intensity) and phase measurements at a single wavelength (830 nm) are shown in Fig. 1 for a
five-layered slab model representing the skin, skull, CSF, gray matter, and white matter of the
head. The thickness of the skin, skull, CSF, and gray matter is 2.5, 6.5, 3, and 25 mm, respec-
tively, with the tissue properties as shown in Table 1, and the sensitivity maps are shown for SD
distances of 10, 20, 30, and 40 mm. The increasing depth sensitivity of intensity and phase with
increasing SD distance is clearly observed, and for the same SD distance, the phase measurement
demonstrates a higher depth sensitivity, while being more uniform as compared with intensity.

While this is a very promising aspect of the FD-DOT technique, a straightforward superficial
signal regression procedure on both intensity and phase signals, as will be shown, can result in
misleading hemodynamic recovery. It is demonstrated in this work that, as the phase signals have

Fig. 1 Jacobian of log intensity and phase measurements for an absorption coefficient at 830 nm,
at SD distances of 10, 20, 30, and 40 mm, on a five-layered slab. The layers (dashed lines) from
top to bottom represent skin/scalp, skull, CSF, gray matter, and white matter, with tissue properties
shown in Table 1.
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relatively higher sensitivity toward deeper tissue than intensity signals, even the short distance
phase measurements (which may unknowingly be used to regress superficial signal contamina-
tion) may be used to measure the functional activity from the deeper tissue.

The primary requirement of the regressor signal (the short distance measurement that is
regressed from the measurements) is that it should be uncorrelated (i.e., orthogonal) to the sig-
nals originating at the deeper tissue. But in the case of phase, even the short distance measure-
ment contains some deeper tissue information, making it correlated to the functional signal
originating in the brain. Therefore, an unchecked regression of the phase signals using the
short-distance phase measurement not only would include the unwanted superficial signal con-
tamination in the recovery but also can result in a reduced component of the functional signal
from the brain, which may lead to false positives of functional activations in the cerebral region.
In this work, this phenomenon is demonstrated and an alternative regression methodology for
reducing superficial signal contamination in the phase signal in the context of the FD DOT sys-
tem is provided.

2 Superficial Signal Regression—Methodology

Consider an NIRS setup with M measurement channels of different SD combinations repre-
sented by the index i at time t to measure changes in intensity in log-scale ΔyiðtÞ, i.e., the change
in attenuation (optical density) of intensity at a given wavelength. It can be expressed as a sum of
changes in attenuation due to absorption changes in superficial tissue and in the brain tissue
(assuming there are no scattering related changes), which is written as

EQ-TARGET;temp:intralink-;e001;116;312ΔyiðtÞ ¼ sysðiÞΔμasðtÞ þ sybðiÞΔμabðtÞ: (1)

Here, sysðiÞ and sybðiÞ are the sensitivities of intensity with respect to absorption changes in
superficial and brain tissues, respectively, corresponding to a SD channel-i. Similarly, the differ-
ential phase signal ΔpiðtÞ, has a contribution from absorption changes in superficial tissue and
the brain tissue as

EQ-TARGET;temp:intralink-;e002;116;230ΔpiðtÞ ¼ spsðiÞΔμasðtÞ þ spbðiÞΔμab ; (2)

where spsðiÞ and spbðiÞ are the sensitivities of phase with respect to absorption changes in super-
ficial and brain tissues, respectively, corresponding to channel-i. As seen in the above two equa-
tions, the NIRS signal is inherently contaminated with changes corresponding to the superficial
tissue. In this regard, signal regression techniques are generally used to remove the hemo-
dynamic changes from the superficial tissue, which can otherwise lead to artefacts or over-
shadow the cortical functional activation due to very high sensitivity of superficial tissue
relative to the brain. The primary requirement to completely remove superficial signals using
a regression method is that the changes in the superficial tissue and brain tissue must be orthogo-
nal to each other.11 By definition, two signals x1ðtÞ and x2ðtÞ are said to be orthogonal if they are
uncorrelated, i.e., their inner product hx1; x2i ¼ 0, which is defined as

Table 1 Background tissue properties (4).

Region HbO (mM) Hb (mM) Sa (mm−1) Sp

Skin 0.0575 0.0313 0.53 1.15

Skull 0.0443 0.0195 0.72 0.89

CSF 0.0110 0.0083 0.30 0

Gray matter 0.0559 0.0350 0.50 1.73

White matter 0.0680 0.0265 0.81 1.31
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EQ-TARGET;temp:intralink-;e003;116;735hx1; x2i ¼
Z

∞

−∞
x1ðtÞx2ðtÞdt: (3)

Considering ΔynnðtÞ to be the nearest-neighbor (short distance) intensity signal and
assuming that it is strongly sensitive to the absorption changes in superficial tissue, i.e.,
ΔynnðtÞ ¼ kΔμasðtÞ (where k is the corresponding sensitivity factor), along with the condition
that the absorption changes in superficial tissue are orthogonal to the absorption changes in brain
tissue, i.e., hΔμas ;Δμabi ¼ 0, the contribution from the superficial tissue is regressed using

EQ-TARGET;temp:intralink-;e004;116;638ΔyriðtÞ ¼ sybðiÞΔμabðtÞ ¼ ΔyiðtÞ −
hΔyi;Δynni
hΔynn;Δynni

Δynn: (4)

For FD-NIRS systems, a similar regression method for phase-based phase regression is
applied:

EQ-TARGET;temp:intralink-;e005;116;569ΔpriðtÞ ¼ spbðiÞΔμabðtÞ ¼ ΔpiðtÞ −
hΔpi;Δpnni
hΔpnn;Δpnni

Δpnn: (5)

However, in the context of phase signals, this may not be directly applicable, as even the short
distance phase signals will have some contribution coming from the deeper tissues, as shown in
Fig. 1. This is due to the fact that the sensitivity of phase signals is higher for deeper tissues as
compared with intensity. Therefore, implementing the regression as shown in Eq. (5), would lead
to a decrease in the signal contrast from the brain and contaminate the brain signal with super-
ficial tissue related changes. To avoid this, the use of short-distance intensity for the phase regres-
sion (intensity-based phase regression) is proposed:

EQ-TARGET;temp:intralink-;e006;116;439ΔpriðtÞ ¼ spbðiÞΔμabðtÞ ¼ ΔpiðtÞ −
hΔpi;Δynni
hΔynn;Δynni

Δynn: (6)

The effect of these two signal regressionmethods will be demonstrated in the following sections
through the simulation of visual cortical activation as observed using an FD-high density-DOT
(FD-HD-DOT) measurement system. It will be clearly shown that a phase-based phase regression
inaccurately retains the superficial signal even after regression, which will result in unwanted and
potentially misinterpreted false positives of focal activations. The use of intensity-based phase
regression is shown to be a much more accurate approach to fully removing the superficial signal
contamination from the FD-HD-DOT reconstruction of focal activations using FD data.

3 Simulation

A realistic simulation of a functional activation in the visual cortex region is demonstrated in this
section to show the effects of the abovementioned regression methods in the recovery of func-
tional hemodynamic activity from the cerebral region. Consider a five-layer (skin, skull, CSF,
gray matter, and white matter) head model mesh with 265 K nodes and 1.5 mm3 average volume
of the tetrahedral elements and the tissue properties of oxy-hemoglobin (HbO) and deoxy-hemo-
globin (Hb) concentration, scattering amplitude (Sa), and scattering power (Sp) as shown in
Table 1 (4). The modeled measurement system consists of 24 sources and 28 detectors in a
HD array, as shown in Fig. 2, which is placed on the back of the head to map visual-cortex
activations. In such a grid pattern setup, SD distances can be categorized into different neigh-
borhoods i.e., 13 (nearest neighbor 1 or NN1), 29 (NN2), 39 (NN3), 47 (NN4), 54 (NN5), and so
on. Only the first four NNs are considered in this case as higher NNs are limited by the dynamic
range of the detectors and the lower signal-to-noise ratio as previously reported.10

Physiological signals (PjðtÞ) at 1.2, 0.25, and 0.1 Hz to model cardiac,12 respiratory,13 and
Meyer waves,14 respectively, are added as sinusoidal changes15 in hemoglobin concentrations in
skin, skull, gray matter, and white matter, along with a functional signal FðtÞ peaking at t ¼ 10 s

originating within gray matter at a depth of 10 mm with an activation blob of radius 2.5 mm
(Fig. 3). A superficial signal SðtÞ originating in the skin region, peaking at t ¼ 30 s, is also
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included to observe the effects of superficial layer signal contamination. These functional FðtÞ
and superficial SðtÞ signals are modeled using a Gaussian distribution16 with their temporal full
width half maximum (FWHM) values such that the two distributions are mutually separated in
time to approximately represent two simple orthogonal signals for an ideal regression:

EQ-TARGET;temp:intralink-;e007;116;472FðtÞ ¼ F0 exp

�
−
�
t − 10

2

�
2
�
; (7)

EQ-TARGET;temp:intralink-;e008;116;415SðtÞ ¼ S0 exp

�
−
�
t − 30

2

�
2
�
; (8)

EQ-TARGET;temp:intralink-;e009;116;379PjðtÞ ¼ PCj
QðωC;BWC; tÞ þ PRj

QðωR;BWR; tÞ þ PMj
QðωM;BWM; tÞ: (9)

EQ-TARGET;temp:intralink-;e010;116;356Qðωx; BW; tÞ ¼
X
ω

AðωÞ sinðωtþ ξÞ: (10)

Fig. 3 (a) Axial view and (b) lateral view of the focal activation in the gray matter at a depth of
10 mm and blob radius of 2.5 mm, at time t ¼ 10 s.

Fig. 2 Array of 24 sources (red) and 28 detectors (blue) placed on the back of the head to probe
the visual cortex region.
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Here, PjðtÞ represents the combined physiological signals, the subscript j ¼ 1 represents
skin and skull regions, and the subscript j ¼ 2 represents gray and white matter regions (assum-
ing that CSF contains no physiological signal). The individual physiological signalQðωx; BW; tÞ
is a sinusoidal signal with a non-zero bandwidth (“BW”) equal to 0.1 × ωx, which is represented
by a sum of sinusoidal signals given by Eq. (10), with their amplitude profile being centered at
ωx, with a FWHM of the given BW, along with a random phase offset of ξ. This ensures that the
function Q lies between −1 and 1 with PCj

, PRj
, and PMj

representing the respective amplitudes

of cardiac, respiratory, and Meyer waves from Eq. (9), respectively. The physiological signal
PðtÞ, along with its frequency spectrum showing a 10% BW associated with each signal, is
shown in Fig. 4.

All of the signals from Eqs. (7) to (9) represent a percentage change to the background HbO
concentration as given in Table 1 with the corresponding Hb change considered to be of the same
magnitude but opposite sign. For the focal activation, however, it is known that the HbO and the
total hemoglobin concentrations increase while the Hb decreases.17 In line with this, the Hb
change for focal activation is considered to be −0.47 times the change observed in HbO.10

The amplitude F0 is chosen such that the corresponding maximum observable change in inten-
sity is 0.05 in log scale to accurately represent experimental measurements.18 While the func-
tional signal FðtÞ is only confined to the activation blob of 2.5 mm, the superficial signal SðtÞ
occurs in the entire skin region and therefore has a quantitatively higher effect on the measured
signals. In this regard, S0 is chosen to be 100 times lower than F0 so that both functional
and superficial signals can be clearly observed in both intensity and phase. Effectively, the
values of the signal strengths considered in this simulation are PC1

¼ 0.0018, PC2
¼ 0.006,

PR1
¼ 9 × 10−4, PR2

¼ 0.0015, PM1
¼ 7 × 10−4, PM2

¼ 0.0012, F0 ¼ 3, and S0 ¼ 0.03.
The data are simulated at a 40-Hz sampling rate, at wavelengths 830 and 690 nm and an

intensity modulation frequency of 140 MHz using NIRFAST,19 with the resulting intensity and
phase measurements for all source/detector measurements along with their frequency spectrum
shown in Fig. 5. The low-frequency Gaussian profile with ripples at the 0.05 Hz (= 1/20) interval
simply indicates that the two Gaussian peaks in the signal at an interval of 20 s correspond to
functional and superficial signals in this study and the peaks at 0.1, 0.25, and 1.2 Hz correspond
to the physiological signals. In accordance with Eqs. (7) and (8), the negative peak at t ¼ 10 s in
the data as shown in Figs. 5(a) and 5(b) corresponds to the increase in HbO and decrease in Hb
concentrations at t ¼ 10 s. This is the functional signal from the modeled focal activation, and it
becomes stronger (particularly for intensity data) with increasing SD distance owing to the
higher depth sensitivity at higher NN distance. The data even at higher SD separations are also
seen to be contaminated with superficial signal as identified by the peak at t ¼ 30 s. The varying

Fig. 4 (a) Time trace and (b) frequency spectrum of physiological signal: a combination of cardiac,
respiratory, and Meyer waves with 10% BW.
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amplitudes of functional and superficial signals at different SD distances in Figs. 5(a) and 5(b)
are due to the varying sensitivity of intensity and phase measurements at different SD distances.

Gaussian random noise is added to the simulated measurements as a function of SD distances
to model realistic data based on an empirically derived noise model. The empirical noise model
was built on data measured using ISS Imagent™ (an FD system console), with six detectors at
distances of 18 to 58 mm from the source, placed on the visual cortex of a healthy subject. The
source modulation frequency was set at 140 MHz, and data was recorded at a sampling rate of
39.74 Hz while the subject was at rest and quietly fixated on a blank screen. The noise was then
estimated as the standard deviation of log mean intensity measurement as intensity noise and of
phase difference (in deg) as the phase noise. It was then fitted using a two-term exponential as a
function of SD distance details, which can be found elsewhere.10 The derived noise levels are
plotted in Fig. 6 for the four NN SD distances in the measurement setup as shown in Fig. 2.

The raw intensity and phase signals with the added noise at 830 nm for multiple SD distances
(grouped as neighborhoods) are shown in Fig. 7.

Fig. 5 (a) and (b) Time traces of intensity and phase measurements without noise at four NNs
modeled at 830 nm and (c) and (d) respective frequency spectra of intensity and phase
measurements.
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Fig. 7 (a) and (b) Time traces of intensity and phase measurements with noise added at four NNs
modeled at 830 nm and (c) and (d) respective frequency spectra of intensity and phase
measurements.

Fig. 6 Noise levels of intensity and phase measurements as a function of SD distances.
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To reduce the noise in the modeled data, similar to a realistic experimental procedure, the
following pre-processing steps are applied before the superficial signal regression procedure:

a. The measurements are high-pass filtered at a 0.01 Hz cutoff frequency to remove any
drifts present in the signal caused due to the measurement systems (not directly appli-
cable in this simulation experiment).10

b. Measurements are then low-pass filtered at a 0.1 Hz cutoff frequency to remove the
physiological noise, i.e., pulse, respiratory, and Meyer waves.10

c. Data are then down-sampled from 40 to 1 Hz with averaging every 40 samples, thereby
greatly reducing random noise present in the signals.

d. To improve the contrast and further reduce noise, the measurements from multiple rep-
etitions of similar excitations are block-averaged.20 In this case, 10 repetitions are aver-
aged together to increase the signal-to-noise ratio of the data.

While the regression of intensity data is well understood,18 the regression of phase signals is
the primary objective of this work. It is observed from Figs. 5 and 7 that the functional signal is
also seen in the first NN (NN1) measurements of phase, while the NN1 measurements of inten-
sity signals contain predominantly the superficial signal. Therefore, the following two regression
methods are implemented on the phase data:

a. regression of phase signals with the short-distance phase signal (phase-based phase
regression).

b. regression of phase signals with the short distance intensity signal (intensity-based phase
regression).

The regressor signal (short-distance measurement) is regarded as the average of all NN1
measurements of either intensity or phase corresponding to the regression method. The result
of regression methods on this processed and noise-reduced data is shown in Fig. 8.

It can be seen from Fig. 8(a), that the contamination due to the superficial signal at t ¼ 30 s is
clearly removed from intensity data after regression with short-distance intensity data. The phase
signals, however, retained the superficial signal contamination (t ¼ 30 s) with a flipped sign

Fig. 8 (a) Regressed intensity measurements with short-distance intensity measurement;
(b) regressed phase measurements with short-distance phase measurement; and (c) regressed
phase measurements with short-distance intensity measurement post filtering and all noise-
reduction steps.
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after the regression with the short-distance phase measurement, as seen in Fig. 8(b). The regres-
sion procedure finds the overlap (cross-correlation coefficient) between each phase measure-
ments and the average of NN phase measurement (Δpnn) and thus subtracts Δpnn of the
amplitude proportional to this overlap as defined in Eq. (5). As Δpnn has both a superficial
signal and a functional component, any phase measurement with a higher relative strength
of functional to superficial signal, as compared with Δpnn, would result in an overlap value
greater than the individual strength of superficial signal present. Therefore, subtracting a higher
amplitude of superficial signal than what is present, we observe a change in sign for superficial
signals after regression with Δpnn. However, with the regression of phase signals using short-
distance intensity measurement, the superficial signal contamination is clearly seen to be
removed in Fig. 8(c).

To quantitatively represent the reduction of superficial signal contamination, before and after
regression, a correlation coefficient between the measurement ΔgiðtÞ and the superficial signal
SðtÞ are calculated as follows:

EQ-TARGET;temp:intralink-;e011;116;568Rðgi; SÞ ¼
���� hΔgi; SiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΔgi;Δgii
p ffiffiffiffiffiffiffiffiffiffiffihS; Sip

����; (11)

where g can represent either intensity ΔyiðtÞ, or phase ΔpiðtÞ, and the index i represents a meas-
urement channel corresponding to a SD combination. The value of Rðgi; SÞ can vary from 0 to 1
(equivalent to 0% to 100%), which directly represents the amount of superficial signal SðtÞ
present in each measurement ΔgiðtÞ.

To further observe the amount of superficial signal contamination present exclusively in a
subset of the channels that substantially detect the functional activity, a threshold of 90% is
considered over the maximum value of Rðgi; FÞ, i.e., Rðgi; FÞ > 0.9 ×maxfRðgi; FÞg, where
FðtÞ is the functional signal and the value Rðgi; FÞ defines the amount of functional signal
present in the measurement, similar to Eq. (11). The correlation coefficients Rðgi; SÞ for all
of the measurements before and after regression are shown in Fig. 9(a), and the correlation coef-
ficients for the channels that detect functional activity are shown in Fig. 9(b).

As the value of the correlation coefficient for all of the measurement channels varies from 0 to
1, a root mean square (RMS) value of Rðgi; SÞ over all measurement channels i (or a subset of
channels that detect functional activity) is considered to represent an effective strength of the

Fig. 9 Correlation coefficient of all intensity and phase measurements with respect to superficial
signal, before superficial signal regression vs after superficial signal regression, for (a) all meas-
urement channels (b) for the channels detecting 90% and above of the maximum functional
activity.
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superficial signal in the measurements of either intensity or phase and is shown in Table 2 before
and after the regression procedure.

The suppression factors in Table 2 correspond to the ratio of correlation coefficient Rðgi; SÞ
before and after regression, and a value >1 implies that the regression procedure has reduced the
superficial signal contamination. The suppression factor for intensity-based phase regression is
not only >1 but also higher than the phase-based phase regression procedure, therefore indicat-
ing a better reduction in the superficial signal contamination. A value <1 of the suppression
factor for phase-based phase regression for the channels that detect functional activity highlight
that this regression procedure increased the amount of superficial signal contamination in the
channels that detect functional activity. The effect of this false-positive suppression will be better
demonstrated through tomographic reconstruction.

Tomographic reconstruction of hemoglobin concentration changes based on the regressed
intensity and phase data as shown in Fig. 8 is performed. The Jacobian J (the sensitivity of
intensity and phase with respect to the absorption coefficient at every node in the head model)
is constructed21 with background optical properties as given in Table 1 on a measurement setup
as shown in Fig. 2 at two wavelengths of 690 and 830 nm, individually, to retrieve the respective
absorption changes at these wavelengths. The retrieved absorption change at each wavelength is
then related to the HbO and Hb concentration changes:22

EQ-TARGET;temp:intralink-;e012;116;261

�
Δμa690
Δμa830

�
¼

�
εHbO;690 εHbO;830
εHb;690 εHb;830

��
ΔHbO
ΔHb

�
: (12)

The absorption changes (Δμa) at every node of the head model is related to the measurement
changes (Δy and Δp), and the sensitivity matrix is as follows:

EQ-TARGET;temp:intralink-;e013;116;191

�
Δy
Δp

�
¼ J:Δμa ¼

�
Jy
Jp

�
Δμa: (13)

The Jacobian J consists of both the sensitivity of intensity (Jy) and phase sensitivities (Jp),
which are different in their magnitude.10 To retrieve the absorption changes, a single step inver-
sion of the Jacobian is performed together with Tikhonov regularization to compensate for the
problem being ill-posed and ill-conditioned.19

Table 2 RMS values of correlation coefficients indicating the amount of superficial signal con-
tamination in the intensity and phase measurements before and after regression at 830 nm (the
values within brackets correspond to 690 nm).

Measurement
type

Before
regression
Rðgi ; SÞ

After
regression
Rðgregi ; SÞ

Suppression
factor

All measurement
channels

Intensity 0.7774 (0.8174) 0.0361 (0.0479) 21.5 (17.1)

Phase 0.5881 (0.5572) 0.2072 (0.0567)
(phase-based regression)

2.8 (9.8)

0.0402 (0.0420)
(intensity-based regression)

14.6 (13.2)

Channels detecting
at least 90% of the
functional activity

Intensity 0.1944 (0.4882) 0.0102 (0.0375) 18.9 (13.0)

Phase 0.0797 (0.1168) 0.2807 (0.0544)
(phase-based regression)

0.3 (2.1)

0.0107 (0.0360)
(intensity-based regression)

7.4 (3.2)
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EQ-TARGET;temp:intralink-;e014;116;735Δμa ¼ J∼1
�
Δy
Δp

�
¼ JTðJJT þ αIÞ−1

�
Δy
Δp

�
: (14)

Here, α is the regularization factor, which is considered to be α ¼ Λ max½diagðjjTÞ�, with the
weight factor Λ ¼ 0.01 to smooth the parameter recovery.20 The regularization is implemented
separately for the intensity Jacobian and phase Jacobian kernels.10 The recovered absorption
changes at two wavelengths are then used to retrieve the corresponding changes in hemoglobin
concentrations using Eq. (11).

The recovered focal activation using the intensity data regressed with short-separation inten-
sity measurement (intensity-based intensity regression) and phase data regressed with short-
separation phase measurement (phase-based phase regression) at t ¼ 10 s is shown in Fig. 10.
This is achieved by spatially thresholding the recovered hemoglobin concentration at 50% of the
maximum change. The size of the observed activation in Fig. 10 indicates the FWHM of the recov-
ery, which is found to be 10.1 mm given the 5 mm (2.5-mm radius) of ground-truth focal acti-
vation. Similar recovered focal activation is observed using the intensity data and phase data
regressed with short-separation intensity measurement (intensity-based intensity regression and
intensity-based phase regression), at t ¼ 10 s, also with an FWHM of 10.1 mm.

However, at t ¼ 30 s, the recovered hemoglobin changes show a “false” focal activation for
the phase-based phase regression method, as shown in Fig. 11, indicating a false positive. The
maximum absolute change observed for the recovered HbO concentration is seen as a negative
change, as shown in the data in Fig. 8. The focal activation recovered and shown in Fig. 11
indicates a negative change of HbO concentration thresholded at 50% of the maximum absolute
change, with an FWHM of 9 mm. The HbO recovery for intensity-based phase regression at
t ¼ 30 s, however, does not show any specific focal activation recovery, which is also in line
with the data observed in Fig. 8.

To further substantiate the presence of superficial signal contamination in phase-based phase
regression in comparison with the intensity-based phase regression, the recovered HbO in the
region of ground-truth activation, i.e., within a 2.5-mm radius from (11.5, −85, and 10.7) is
shown in Figs. 12 and 13. The negative side lobes on either side of the peak at t ¼ 10 s is simply
an effect of using the band-pass filter on a Gaussian signal. The negative peak of HbO in Fig. 12,
at t ¼ 30 s, clearly indicates the direct effect of superficial signal contamination introduced due

Fig. 10 Axial view at (a) z ¼ 11.8 mmand (b) lateral view at x ¼ 12.5 mmof the recovered HbO at
t ¼ 10 s showing a positive change, reconstructed using the intensity data regressed with short-
separation intensity measurement and phase data regressed with short-separation phase meas-
urement. The center of ground-truth focal activation at (11.5, −85, and 10.7) is shown by the blue
“x ” mark.
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to the phase-based regression method appearing not only in the cerebral region but also in the
locality of ground-truth activation, therefore leading to false positives.

4 Discussion

Recent developments in FD-DOT imaging studies have shown that the use of phase along with
intensity data significantly improves the image quality. The higher depth sensitivity of phase
signal relative to intensity signal enables a significantly better localization of focal activations
especially in depth using an FD-DOT system, out-performing a CW-DOT system. However,

Fig. 12 Temporal plot of normalized HbO recovery in the region of ground-truth focal activation for
the phase-based phase regression method.

Fig. 11 (a) Axial view at z ¼ 9.8 mm and (b) lateral view at x ¼ 13.5 mm of the false-positive
recovery of HbO at t ¼ 30 s showing a negative change, reconstructed using the intensity data
regressed with short-separation intensity measurement and phase data regressed with short-
separation phase measurement. The center of ground-truth focal activation (11.5, −85, and
10.7), occurring at t ¼ 10 s is shown by the blue x mark.
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performing similar pre-processing techniques of signal regression that are implemented in a CW-
DOT system without careful observation will lead to unintended and misleading hemodynamic
activity and therefore misinterpretation of the results.

While the superficial signal regression for intensity data is well understood and utilized often
to improve the image quality, the signal regression for phase data is not as straightforward or well
understood. The very advantageous aspect of higher sensitivity of phase signal to deeper tissue
can lead to even the short-distance phase measurement detecting functional activity from deeper
tissue. Therefore, any regression of phase signal using this short-distance phase measurement
(phase-based phase regression) would not completely remove the superficial signal contamina-
tion and may additionally cause a reduction in the strength of the recovered functional signal. To
this end, superficial signal regression of phase data using short-distance intensity measurement
(intensity-based phase regression) is shown to more accurately remove the superficial signal
contamination.

Utilizing realistic head model data, Fig. 5(b) highlights the presence of the functional signal,
originating in the cerebral region at a depth of 10 mm from surface, even in the short-distance
phase signals, while the short-distance intensity signals mostly contain the superficial signal.
Therefore, given the superficial signal being uncorrelated to the functional signal, the regressor
signal in the phase-based phase regression method (i.e., short-distance phase measurement) is
still correlated with the functional signal. This is unlike the regressor signal in the intensity-based
phase regression method (i.e., short-distance intensity measurement), which is uncorrelated to
the functional signal and affects the regression procedure as highlighted in Sec. 2. This is seen in
the results of Fig. 8(b), where an unbalanced regression using short-distance phase measurement
causes a negative effect of signal contamination (inverted peak at t ¼ 30 s) in the phase data. It is
also seen to reduce the functional component in the signals [decreased magnitude at t ¼ 10 s, as
compared with raw data in Fig. 5(b)] that can cause a reduction in the contrast of recovered
functional activation; the stronger the functional component in the regressor signal (short dis-
tance phase measurement) is, the greater the reduction in the functional component is in all of the
measurements post regression. But using short distance intensity measurement to regress phase
in Fig. 8(c) has proven to be efficient in its performance by both retaining a higher functional
component and suppressing the superficial signal component at t ¼ 30 s.

The strength of the superficial signal present in intensity and phase measurements as defined
by the correlation coefficient shown in Fig. 9 indicates that the phase-based phase regression
retains a higher strength of the superficial signal in the regressed data as compared with intensity
regression and intensity-based phase regression procedures. The RMS value of the correlation

Fig. 13 Temporal plot of normalized HbO recovery in the region of ground-truth focal activation for
the intensity-based phase regression method.
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coefficient (calculated on all measurement channels) shown in Table 2, before and after the
regression, indicates the reduction in superficial signal contamination at 830 nm by a factor
of 2.8 for phase-based phase regression (13% of what is observed in intensity regression) and
14.6 for intensity-based phase regression (68% of what is observed in intensity regression), dem-
onstrating the improvement in the regression of phase measurements using short-separation
intensity measurement. The corresponding suppression factors at 690 nm are 9.8 for phase-based
phase regression (57% of what is observed in intensity regression) and 13.2 for intensity-based
phase regression (77% of what is observed in intensity regression). The relatively higher sup-
pression factors for phase-based phase regression at 690 nm compared with those at 830 nm is
because the functional signal present in the short-separation phase measurement at 690 nm is
relatively lower than that at 830 nm, therefore making the phase regressor signal more uncorre-
lated to the functional signal. The lower functional activity at 690 nm corresponds to the lower
Hb change i.e., 0.47 times that of HbO change, as the signal at 690 nm is more sensitive to Hb
and at 830 nm it is more sensitive to HbO.

The DOT parameter recovery based on this regressed data is seen in Fig. 10. The focal acti-
vations at t ¼ 10 s for both phase-based phase regression and intensity-based phase regression
methods (together with regressed intensity data in both cases) are found to have maxima location
at a distance of 2.2 mm from the center of ground-truth activation, with a FWHM of 10.1 mm
corresponding to a ground-truth width of 5 mm of the focal activation. At t ¼ 30 s, however, the
DOT parameter recovery of hemodynamic activity for the phase-based phase regression method,
as seen in Fig. 11, estimated a false-positive focal activation at maxima location also at a distance
of 2.2 mm from the center of ground-truth focal activation (that occurred only at t ¼ 10 s) and an
FWHM of 9 mm.

The cause of such a false positive can be explained by considering a set “S” of measurement
channels that prominently detect the functional signals that originate in the region R. Conversely,
any change in these S set of measurement channels corresponds to a prospective recovery in the
region R. The regressor signal of phase, which contains both functional and superficial signal
content, would cause a new peak corresponding to the superficial signal, if it is absent initially in
the given S set of measurements, which would therefore result in a recovery in the original
activation region “R.” Thus, instead of removing superficial signal contamination, the phase-
based regression approach would cause the superficial signal to directly contaminate the hemo-
dynamic recovery in the cerebral region. This is further substantiated by Figs. 12 and 13, which
show the recovered HbO concentration over the entire period of time in the original focal-
activation region R, where it is seen that a negative peak at t ¼ 30 s for the phase-based phase
regression method shows the superficial signal contamination, while the HbO recovery for the
intensity-based phase regression method did not show any such peaks at t ¼ 30 s.

5 Conclusion and Future Work

This work has demonstrated the adverse effects of implementing a phase-based phase regression
in FD-DOTand shows the existence of superficial contamination in such cases even after regres-
sion, due to the possibility of the presence of the functional signal in phase data even at shorter
SD separations, while also reducing the functional component in all of the measurements, which
can lead to a reduction in the contrast of recovered focal activations. An alternative to the inten-
sity-based phase regression method is proposed and demonstrated to correctly remove super-
ficial signal contamination. This type of regression plays a significant role in any FD-based
methods in which signal regression is implemented, such as FD-DOT. The same theory can
also be extended for time resolved systems (TRS) in which the moments-based analysis is imple-
mented to observe hemodynamic activity, as the first-order moment of the distribution of time of
flight of photons is similar to the phase measurement in FD NIRS systems and can also become
significant to other data types (higher order moments in TRS) that have a higher sensitivity
toward deeper tissue and therefore require an intensity-based (total photon count in TRS) regres-
sion approach instead of using the same data type for superficial signal regression. This needs
further investigation and is the subject of future studies.
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