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Abstract. Graphene nanoribbons (GNRs) and graphene hybrid photodetectors were demon-
strated in the middle- and long-wavelength infrared (MWIR and LWIR, respectively) regions.
Graphene transistors were prepared using Si substrates with an SiO, layer and source and drain
electrodes. Single-layer graphene fabricated by chemical vapor deposition was transferred onto
the substrates to form a channel; the GNR was formed on this channel by solution dispersion.
The formation of graphene and the GNR was confirmed by position mapping of the Raman
spectra. The photoresponse was measured in the MWIR and LWIR regions, and was found
to be drastically enhanced for devices with the GNR when compared with those without it.
Although the devices without the GNR could not respond at temperatures higher than 15 K,
those with the GNR could be operated at temperatures up to 150 K. This was attributed to photo-
gating by the GNR layers that absorbed the MWIR and LWIR radiation, leading to a significant
temperature change. These results can potentially contribute toward developing high-perfor-
mance and broadband IR graphene-based photodetectors. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.0E.61.11.115103]
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1 Introduction

Graphene is an atomically thin carbon sheet with a two-dimensional hexagonal lattice
structure."? It has attracted immense attention in various fields, including electronics,® energy
storage,* biological,” spintronics,® and photonics’® applications because of its unique electronic
and optical properties.’ In particular, graphene is applicable to photodetectors, which require a
broadband photoresponse from the ultraviolet to terahertz regions, high-speed operation, and low
fabrication costs.'”'> Numerous methods, including those employing asymmetric electrodes, '?
plasmonics,'*” p — n junctions,'®!® bolometers,”**' photonic cavities,”>>* waveguides,?> >’
Schottky junctions,”®>" and photogating,*'° have been proposed to enhance the response
of graphene-based photodetectors. Among them, photogating is the most promising approach
because it can realize the highest performance. Photogating requires the photosensitizers to be
present in the vicinity of graphene to produce a voltage change. Various photosensitizers, includ-
ing h-BN,***° quantum dots,*" Si,>%> InSb,***7 and LiNbOs,** have been used in the deep-
ultraviolet, visible, near-, middle-, and long-wavelength infrared (NIR, MWIR, and LWIR)
regions, respectively. In the MWIR and LWIR regions, the applicable photosensitive materials
are practically limited to small-bandgap semiconductors such as mercury cadmium telluride and
III-V compounds, which are difficult to design, especially for the LWIR region. To address
this problem, we have used a graphene nanoribbon (GNR)*'™ as the photosensitizer for
photogating.** The GNR is composed of narrow ribbons of graphene, and its energy gaps can
be tuned by the number of dimer lines along the width;***® these properties render the GNR
promising for use as MWIR and LWIR photosensitizers. In this study, we demonstrate the con-
cept of broadband GNR photogating in graphene photodetectors operated in the MWIR and
LWIR regions. The GNR was synthesized through a top-down approach, wherein multiwalled
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carbon nanotubes were used as the starting materials.*” The GNR was dispersed on graphene
field-effect transistors (GFETs). Raman spectra of the GNR and graphene were obtained, and
were used to image the GFET channel. The MWIR and LWIR photoresponses of the devices
were evaluated under irradiation at wavelengths of 4.6 and 9.6 um, respectively.

2 Device Fabrication and Assessment

Figure 1 shows the procedure used to fabricate GFETs with GNR photosensitizers. A 625 ym-
thick Si substrate with a 290 nm-thick thermal SiO, insulator layer was first prepared [Fig. 1(a)].
The source and drain electrodes were then formed [Fig. 1(b)]. Single-layer graphene was syn-
thesized by chemical vapor deposition (CVD)*® and transferred onto the electrodes and SiO,
layer.>! A soluble GNR with a length > 2 ym and width > 200 nm was obtained from the car-
bon nanotubes using potassium intercalation.*’ After centrifugation in ethanol to remove aggre-
gation, the GNR was spin-coated on graphene [Fig. 1(c)]. The GNR/GFET channel with a length
of 15 um and width of 5 ym was formed by photolithography and O, plasma etching [Fig. 1(d)].

Figure 2 shows a schematic of the GNR/graphene photodetectors. The GNR was coated on
the GFET channel. Fibrous GNRs were not aligned in a specific direction on the graphene sur-
face and were stacked randomly. They were adsorbed on the graphene surface, and no peeling
was observed after application of the photoresist and rinsing with the organic solvent during the
formation of the FET channel. Source-drain bias (V) and back-gate (V,,,) voltages were applied
to the device in a vacuum chamber (GRAIL10-415-4-LV-HT-OP, Nagase Techno-Engineering)

Electrode (b) Graphene

e / (Cr/Au) \ /

p-Si

(c) GNR (d)

Fig. 1 (a)-(d) Fabrication of GFETs with GNR photosensitizers.

(a)
Graphene

Electrode

Fig. 2 (a) Light microscopy image and (b) schematic of a GFET with a GNR photosensitizer.
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Fig. 3 (a) Raman image at 1580 cm~" of the graphene/GNR photodetectors. Inset: light micros-
copy image of the device. (b) Raman spectra of the graphene channel with (red, dotted) and with-
out (black, solid) the GNR.

at 1073 Pa and a temperature range of 15-150 K. The current and applied voltage were measured
using a device analyzer (B1500A, Keysight).

Figures 3(a) and 3(b) show the light microscopy and Raman spectral mapping images of the
GFETs after GNR coating. The light microscopy images and Raman spectral images were
obtained using 532 nm laser excitation and Raman microscopy (Raman touch, Nanophoton).
The distribution of the fibrous GNRs was confirmed at 1580 cm™!. Figure 3(b) shows the
Raman spectra before and after the GNR coating. In addition to the G-mode peak at around
1580 to 1590 cm™' and the 2D-mode peak at around 2680 cm~!, a D-mode peak at around
1340 cm™! derived from carbon lattice defects in the GNR is observed. Although the full width
half maximum (FWHM) of the 2D-mode peak was less than 40 cm~! for a single-layer GNR, the
device exhibited FWHMs in the range of 2663 to 2771 cm™! corresponding to 48 cm™!,
indicating that more than two layers of GNRs were stacked on the graphene channel.

3 Results and Discussion

3.1 IR Photoresponse

The graphene channel was exposed to 4.6 and 9.6 um radiation using a quantum cascade laser
with a 2.0 s irradiation cycle (0.8 s on, 1.2 s off) to investigate the MWIR and LWIR photo-
responses, respectively. The photoresponse was calculated based on the extent of 7,4 modulation
between illuminated and dark conditions (photocurrent, I, = jjgh; — Igark)- The time-dependent
current characteristics were measured with a dwell time and measurement resolution of 80 ms
and 0.1 fA, respectively. Figures 4(a) and 4(b) show the I, responses of the device for MWIR

(a) MWIR Light ON (b) LWIR Light ON
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Fig. 4 IR photoresponse of the device under (a) 4.6 pum MWIR light and (b) 9.6 yum LWIR light
irradiation.
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Fig. 5 Comparison of the LWIR photoresponse in the device with (red, dotted) and without (black,
solid) the GNR.

and LWIR irradiation, respectively, with Vy = 0.1 V and V,,, = 0 V at 15 K. The device exhib-
ited a definite photoresponse with 7, values of 37 and 65 nA under 4.6 and 9.6 ym light irra-
diation, respectively. MWIR and LWIR dual-band detection was achieved. The response time
was estimated to be 300 to 400 ms.

The response noise and low response time in this device were because of the low carrier
mobility and localized distribution of the GNR photosensitizers. The electron field-effect mobil-
ity upg of the device without GNR photosensitizers was ~6000 cm? V~! s~! at the applied Vigs
whereas it decreased to 300 cm? V™! s7! for that with the GNR photosensitizers. An inhomo-
geneous distribution of the GNR photosensitizers on the GFET channel causes a temperature
gradient on the channel, which can improve its thermal IR photoresponse; however, this may also
lead to a decrease in the response time and an increase in the noise. Either the coating conditions
can be improved or the stacking direction of each GNR on the GFET channel can be controlled
to improve the IR response characteristics by increasing the heat dissipation and transport of
thermally excited electrons in the GNRs.

Figure 5 compares the LWIR photoresponses of the devices before and after the GNR coat-
ing. The device with the GNR photosensitizers exhibits a clear photoresponse with I, = 65 nA,
whereas that without the GNR photosensitizers exhibits Iy = 9 nA. Thus, the LWIR photores-
ponse is enhanced by more than seven times using the GNR photosensitizers.

The photogating effect is primarily attributed to the nature of thermal modulation in the GNR
photosensitizers. Under IR irradiation, graphene devices exhibit bolometric®? and photothermo-
electric effects;’>~> however, the photoresponse from those effects is limited because of their
excellent thermal conductivity, which results in a small temperature change. The GNRs increase
the absorption of MWIR and LWIR light and change the thermal resistance of the device.
Moreover, they modulate the photothermoelectric properties of graphene because of their non-
uniformity. The response time of the device with the GNRs is inferior to that of the device with-
out them, suggesting that the main mechanism of response amplification is the enhancement of
the bolometric effect by the GNR coating. The GNR coating increases the number of layers of
graphene channels on the device more easily than graphene transfer methods, allowing for an
improved thermal IR photoresponse.

3.2 Temperature Dependence of Photogating

The effect of temperature on the device was assessed. Figure 6(a) shows the LWIR photores-
ponse of the device at various temperatures. At 150 K, the photogating effect is reduced by the
thermal noise of the GNR photosensitizers because of thermally generated carriers, thereby
decreasing the LWIR photoresponse. At temperatures higher than 150 K, the LWIR photores-
ponse of the device is no longer observed. Figure 6(b) shows the temperature dependence of the
device responsivity. The LWIR responsivity decreases with increasing temperature. The photo-
gating effect of the GNR photosensitizers is reduced by the decrease in the temperature change
during IR irradiation due to low heat dissipation and a reduction of the bolometric effect.
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Fig. 6 (a) Photocurrent-time characteristics at various temperatures. (b) Dependence of the
responsivity on the device temperature.

The operational temperature range can be further extended by improving the GNR coating con-
ditions and thermal insulation of the GNR/graphene channel region to efficiently maintain the IR
response under thermal effects.

4 Conclusion

We proposed GFETs with GNR photosensitizers for broadband IR operation. The GNR was
formed on a graphene channel using a solution dispersion method. The photoresponse of the
device was measured in the MWIR and LWIR regions. The photoresponse was enhanced by
GNR photogating compared with devices without GNR photosensitizers. We expect that the
device performance can be further enhanced through optimization of the thickness and density
of the GNR layer and improvements to the fabrication process. The results presented here are
expected to contribute to the development of high-performance broadband IR photodetectors.
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