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Chapter 1
Geometrical Optics

When certain optical phenomena can be explained by geometrical concepts,
we are in the realm of what is called geometrical optics. Starting from the idea
that light propagates as geometrical rays, and that this propagation is
governed by Fermat’s principle, we can study the propagation of light in
media with a constant or variable refractive index, image formation in
instruments comprised of optical elements (e.g., lenses, prisms, and mirrors),
optical aberrations that deteriorate such instruments’ image quality, the
design of optical devices, etc. So, although geometrical optics cannot explain
some optical phenomena tied to the wave nature of light, it has a very wide
range of applications (Fig. 1.1). Therefore, starting the study of optics from
the geometrical point of view is fully justified.

Starting from Fermat’s principle, the geometrical properties of optical
systems formed by refracting spherical surfaces, spherical mirrors, and lenses

Figure 1.1 Imaging using a positive lens. The image generated by the lens is real and
becomes the object for the mobile device’s camera that took the photo. We can understand
this imaging process from the perspective of geometrical optics. Courtesy of Felix Ernesto
Charry Pastrana.



Geometrical Optics 5

maintained, and the angle with which the light ray is reflected is equal to the
angle with which the light ray hits.

On the other hand, in the case of refraction, Newton maintains that the
interface that separates two media of different refractive indices (with the
refractive index of the incident medium being less than the refractive index of
the transmission medium) exerts an attraction on the light particles, thus
increasing the normal component of velocity while the tangential component
remains unchanged, as shown in Fig. 1.5. This implies that the modulus of the
velocity vector increases when light passes from a medium with a lower
refractive index to a medium with a higher refractive index, contrary to what
actually happens.

1.1.3 Huygens’ wave theory

Newton’s corpuscular theory is not only wrong about the change in velocity
when light is refracted, but it also cannot explain interference phenomena. A
different proposition was put forth by Huygens, known as Huygens’ principle.

Before stating this principle, let us qualitatively define what a wavefront is
by using mechanical waves on the surface of water. When a drop falls on the
surface of a water pool that is at rest, we can observe a series of ripples (crests
and troughs) on the surface that propagate away from the place where the
drop fell. The shape of the crests (and troughs) are circles [Fig 1.6(a)]. Ideally,
the points at the peak, or highest point, of one of the crests will be at the same
height. We will say that all the points of a peak (and valley) that are at the
same height describe a profile that is called a wavefront.

ny > n;

Refracting
surface

! P Uty Uiy

!
| =
!
|
|
|

Lty > Vi,

Figure 1.5 Newton’s law of refraction.
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1.2 Fermat’s Principle

In his treatise on geometry, Euclid (325-265 BCE) postulates that “a straight
line segment can be drawn joining any two points.” In Euclidean space, the
shortest distance between two points is the length of the straight line segment
that joins them. Following this postulate, Hero of Alexandria (10-70 BCE)
establishes that for light to go from one point to another, it follows the shortest
geometrical path. This is another way of saying that light propagates as
geometrical rays. Given that in a homogeneous medium light propagates with
constant speed, it can also be said that for light to go from one point to another,
it follows the path for which the least time is used. For a homogeneous medium,
the two statements are equivalent. However, if the two points are in different
media (both homogeneous), the result is that light no longer follows the
shortest geometrical path.

In Fig. 1.12(a), three possible light paths are illustrated. A planar interface
separates the media with refractive indices n and n’. The shortest geometrical
path is the straight line PT,Q, but it does not correspond to the path that light
follows if ' # n. The path followed by light resembles lines PT;Q when ' <n
and the lines PT5Q when #’ > n. So how can the real path followed by light be
obtained when ' # n? The answer to this question is obtained by using the
statement above referring to the path for which the least time is used. This
statement was formulated by Fermat (1601-1665) and is known as Fermat’s
principle.

To apply Fermat’s principle to the problem illustrated in Fig. 1.12(a),
consider the geometry of Fig. 1.12(b). The interface is located at y=0 and the
point T at x in the horizontal axis. The coordinates of point P are (0, /) and those
of point Q are (@, — b). The time for light to go from P to Q through T will be

p e P
0
" ™\ \T> \\T; T n
AN
n N\ n
SO\ \
N \\ o
N
\\\\
N\
» Q Q
(a) (b)

Figure 1.12 Sketch to derive Snell’'s law from Fermat's principle. (a) Three possible
trajectories to go from P to Q. (b) Geometry to calculate the real trajectory.
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Figure 1.37 A parabolic mirror focuses the parallel rays coming from infinity at the focal
point.

In Cartesian coordinates, the profile of the paraboloid can be written as

(1.36)

where z is the coordinate along the optical axis, y is the meridional coordinate,
and R, is the radius of curvature of the parabola at the vertex. Then, the focal
point of the mirror is located at the distance R,/2 from the vertex V (Fig. 1.37).

1.5 Lenses: Thin Lens Approximation

If we want to obtain images in a medium other than the spherical refracting
surface discussed in Section 1.3.2, another refracting surface should be
included. In this section, we will deal with refracting elements limited by two
spherical surfaces with a common optical axis. These types of elements are
called lenses.

To obtain the position of the image of a point object, we should use
Eq. (1.21). The Gaussian equation for surface 1 is

oo —m).

1.37
CTa T (137)

for surface 2, it is

m_m_(m—m) (1.38)
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1.5.5 Ray tracing for oblique rays

Although they have been mentioned in Sections 1.3.4 and 1.5.4, oblique rays
can be specifically defined as those rays that leave the tip of an object and do
not travel in a direction parallel to the optical axis. In particular, we are going
to deal with oblique rays that are kept in the meridional plane. We have
already dealt with some of them in Section 1.5.4, e.g., the ray passing through
the center of a lens and the ray directed toward a primary focal point. In this
section, we are interested in oblique rays that are directed in any other
direction, which can occur in ray tracings that involve a combination of two
or more lenses.

For example, in Fig. 1.46, a ray refracted by the lens L; is directed to the
secondary focal point of L;. As it hits the lens L,, how is the ray refracted?
With the ray tracing technique illustrated in Fig. 1.40, we do not have a
solution. However, the ray tracing shown in Fig. 1.45 gives us a hint as to how
to graphically determine the refraction generated by L,. If we assume that the
oblique ray reaching L, is part of a bundle of parallel rays, as illustrated in
Fig. 1.47(a), such a ray will be refracted (according to Fig. 1.45), diverging

L L2

Figure 1.46 Ray tracing for a ray parallel to the optical axis coming out of the object tip.
The ray refracted by lens 1 becomes an oblique ray for lens 2.

Oblique ray Oblique ray

]
Auxiliary ray Auxiliary ray |
I
|
1Secondary Secondary
focal plane focal plane
(a) (b)

Figure 1.47 Oblique rays incident on thin lenses. (a) A negative lens and (b) a positive
lens. To determine the refraction of an oblique ray hitting a lens, an auxiliary ray passing
through the center of the lens and parallel to the oblique ray is drawn. The oblique ray is
refracted traveling toward, or coming from, the point where the auxiliary ray intersects the
secondary focal plane of the lens.



Geometrical Optics 65

MR

FS

CR Y

N\

— \,, R h
\\\ &\\\\\\\\<i\\\v\ = /W

NN S AVAN ANV 2lal=17.0°

I
|
AN \\\\\ SN N 1

FS

SRS R R, S
SRS
SOSOKISXK AKX X

2lal=33.3° -
SOOI,

CXRKI KX XX S XK
N\ N\ N\, S

(b)

Figure 1.67 Energy and field of view cones for the two-lens optical system from
Fig. 1.65. (a) Chief and marginal ray tracing. (b) Whereas the surface boundary of the
energy cone is defined by the marginal ray, the surface of the field of view cone is determined
by the chief ray.

center of the AS. By resizing the FS, the image extension would be modified,
but there would be no effect on the amount of energy reaching each point in
the image because the marginal ray passes through the center of the FS.

1.8 Some Optical Instruments

In this section, we will look at the basic setup of some optical instruments and
describe their operation in terms of topics covered in the previous sections.
First, we will view the human eye as a system of spherical surfaces with
symmetry of revolution and simplify it to a thin lens and image plane. Next,
we will see the magnifying glass coupled with the thin lens model of the eye.
Finally, we will study the telescope and the microscope as extensions of the
magnifying glass, i.e., when another lens is added to form the image of very
distant objects or very close but small objects.

1.8.1 The human eye (schematic representation)

In Section 1.3.1, an overview of the eye as an optical system with various
refracting surfaces is given. Due to the existing variation of the characteristics
of the eye from one person to another, to study the formation of an image in
the eye, models with ocular parameters that represent the mean values of
the population are used. This can be done with varying degrees of precision. If
the refracting surfaces of the eye are assumed to be spherical and centered on
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the same axis (optical axis), a family of models is obtained, the so-called
schematic eyes [9]. In particular, they are used in the paraxial region to obtain
information such as refractive power, magnification, illumination on the
retina, Purkinje images (reflections on the refracting surfaces of the eye),
location of the pupils, location of the focal points (F, F’), location of the
principal points (P, P’) and the nodal points (N, N’), and the effects of
refractive errors (myopia and hyperopia). When image information is required
beyond the paraxial region, more refined models called wide-field schematic
eyes are used, including nonspherical refracting surfaces, off-center refracting
surfaces, and Gradient Index (Grin) models for the refractive index of the
crystalline lens [9].

In this section, we will consider the Gullstrand—Emsley schematic eye in
the relaxed and fully accommodated eye configurations, assuming the eye has
no refractive errors (emmetropic eye). A relaxed eye is understood as the
configuration that the eye has when observing an object located at infinity. In
this situation, the crystalline lens has the longest focal length it can have. As
the object approaches the eye, the crystalline lens changes its geometry to
decrease the focal length so that the image remains focused on the retina. This
process is called accommodation. Accommodation has a limit; thus, there is a
distance limit from which, for distances less than this limit, the image on the
retina can no longer remain in focus. The distance where the accommodation
limit is located is called the near point distance (npd). The farthest distance,
where the eye can see without accommodation, is called the far point distance
(fpd). In an emmetropic eye, we have fpd =. The range in diopters between
npd and fpd is called the accommodation range. The npd varies with age and is
lower in children. For example, a 10-year-old child has an npd of ~70 mm and
his accommodation range will be [1000/(70 mm) — 1000/] = 14.29 D, whereas
a 50-year-old adult has an npd of ~400 mm and her accommodation range
will be [1000/(400 mm) — 1000/c] =2.5 D.

In Fig. 1.68, the Gullstrand—Emsley schematic eye is shown in the relaxed
eye configuration [9]. The parameters R and d are expressed in millimeters,
and the optical power is expressed in diopters. The optical system is
represented by four surfaces: (1) cornea, (2) iris (AS) and anterior surface of
the lens, (3) posterior surface of the lens, and (4) retina. The distances of the
cardinal points (focal points F-F’, principal points P-P’, and nodal points N-
N’) with respect to surface 1 are: VF = —14.983, VF' =23.896, VP =1.550,
VP’ =1.851, VN=7.062, and VN’'=7.363. The secondary focal point F’
coincides with the retina R’. The focal lengths are f=16.53 and /" =22.05. On
the other hand, with respect to surface 1, the pupils are located at
VP,,=3.052 and VP,.=3.687. When examining the refractive power of
each element [P = (n’' — n)/R], the cornea contributes approximately two-thirds
of the total refraction of the eye. All distances are in millimeters.
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Figure 1.85 Components of a ZEISS Primostar transmission microscope. Image reprinted
with permission from ©ZEISS Microscopy (https://www.zeiss.de/).

find the eyepiece(s), in which the eye(s) can be placed to observe the final
image. The object can also be illuminated from above (for example, with a
concave mirror), in which case what will be seen is the light reflected by the
object (reflection microscope).

1.9 Monochromatic Optical Aberrations

In Section 1.3, the Cartesian oval is defined as the surface of revolution that
forms a point image of a point object, both on the optical axis. The shape of
this surface is derived from Fermat’s principle and depends on the object
distance and image distance, with respect to the surface vertex, and on the
relation between the media (surface and surroundings) refractive indices.
Therefore, for different object distances, we will have different Cartesian
ovals. This imposes a practical limitation when designing optical imaging
systems; the image would be well in focus for only one object position. A
practical solution is to use reflecting and/or refracting spherical surfaces and
limit the optical region through which the energy flow will pass to a very small
region around the optical axis, which can be done with a diaphragm (AS) of
small diameter. This condition is known as the paraxial approximation and
gives rise to the Gaussian equation [Eq. (1.21)], which implies that the image
of a point object will be a point image, so the image of an extended object will
be a copy of the object except for a scale and orientation factor.

When the optical system is not limited to the paraxial region, the image of
an extended object will no longer be a faithful replica of the object. The
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between the lenses seeking the greatest possible symmetry to have the least
distortion.

1.9.4 Astigmatism and coma

To see these two aberrations, we will first define the tangential plane and the
sagittal plane. In Section 1.3.5, the meridional plane is defined as the plane
containing the optical axis. In that section, the extended objects are
represented as arrows of a certain height contained in the meridional plane,
and the rays emerging from any point on the object are also limited to the
meridional plane. In an optical system, the plane that contains the optical axis
and the chief ray is called the rangential plane, and the plane that contains the
chief ray and is orthogonal to the tangential plane is called the sagittal plane.
The tangential plane is a meridional plane, but the sagittal plane is not. The
tangential plane maintains its spatial orientation throughout the optical
system, whereas the sagittal plane changes its inclination in the same way as
the chief ray. In Fig. 1.92, these planes are illustrated in a system composed of
an AS and a convex refracting surface. The height of the object is # = —OP,

and the height of the image is #/ = O'P’. In Fig. 1.92, the rays that leave P and
are in the tangential plane are called tangential rays (blue); the rays leaving P
and contained in the sagittal plane are called sagittal rays (red). The
projection of the AS on the refracting surface is shown in the figure and four
points are marked: T; and T, correspond to the intersections of the tangential
marginal rays on the refracting surface, and S; and S, correspond to the
intersections of the marginal sagittal rays on the refracting surface.

The meridional plane containing the marginal tangential rays passing
through T, and T, is shown in Fig. 1.93. Sagittal points S; and S, project into
this meridional plane at a single point. Given the effect of spherical aberration

Refracting
surface P

Figure 1.92 Defining the tangential (blue) and sagittal (red) planes.



Chapter 2
Polarization

According to classical physics, light is an electromagnetic wave and its
properties are obtained from Maxwell’s equations. One of these properties is
that light is a transverse wave; i.e., the electric and magnetic vectors (optical
field) vibrate orthogonally to the direction of wave propagation. If we assume
that the light source is composed of oscillators that emit electromagnetic
energy, then in general, the directions of the electric and magnetic vectors are
random. However, it is possible to maintain the vibration of the resulting
electric (magnetic) vector in a fixed plane or following an elliptical or circular
curve. In such a case, the wave is said to be polarized. This chapter defines
polarization and shows some of its applications (Fig. 2.1).

Taking into account the linearity of Maxwell’s equations, one can limit
the study of polarization to plane harmonic waves. Although the emitted or
reflected optical field can have any form, Fourier analysis shows that the
complex form of the optical field wavefront can be expressed by the sum of

\ LA™,
Optica ——\UN Optica ——\UN

/

Wil N

(a) Image with nonpolarized light. (b) Image with polarized light.

Figure 2.1 Polarization by reflection. The light that enters through a window in a room is
not polarized. When reflecting off a glass plate (smooth surface), as in (a), part of the window
is visible along with the text below the glass plate. If the reflection is viewed at an angle close
to Brewster’s angle, the light will be linearly polarized, which is verified by placing a linear
polarizer between the glass plate and the photographic camera taking the image. This
eliminates reflected light, and the text below the page is seen clearly, as shown in (b).

103
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harmonic plane waves. Thus, the results for plane waves can be extended to
more complex forms of the optical field.

This chapter begins by developing the algebra to describe linear, elliptical,
and circular polarization. Among the polarization mechanisms, dichroism,
polarization by total internal and external reflection, and birefringence are
discussed in detail, with the latter limited to the case in which the principal
directions of the refractive indices coincide with the axes of the crystal glass.
The refractive media considered here are dielectrics without absorption.
Finally, the Jones formalism to describe polarization states and polarizing
elements is presented.

2.1 Plane Waves and Polarized Light

In a vacuum, for a vector point r=(x, y, z) and time ¢, the optical field is
described by the electric vector E and the magnetic vector H, which are related
to each other according to Maxwell’s equations, given by

oH
VXE=—p— 2.1
X Ko 6t’ ( )

oE
VxH=¢— 2.2
X eOats ( )
V- E =0, (2.3)
V-H=0. (2.4)

From Egs. (2.1), (2.2), and (2.3), the wave equation for the electric field is”

_10%E

VE =——,
¢ or?

(2.5)
with ¢ = 1/pe,. For the magnetic field, an equation analogous to Eq. (2.5)
is obtained.

Because E(x, y, z) = {E\(x, y, 2), E\(x, y, 2), E.(x, y, z)} for a time ¢,
Eq. (2.5) represents a set of three equations, one for each component of the
electric field E. If any of these components is represented by V'= V(x, y, z), we
have a scalar equation of the form

PV oV PV 1V

=—a—. 2.6
o T 0y? ToZ T2 26)

Let§ = (sy, s, 5-) be a unit vector in a fixed direction in space. A solution

of Eq. (2.6) of the form V' (r, t) = g(r-S8, ) represents a homogeneous plane

*The wave equation is obtained using the identity vector V x (V x E) = V(V-E) — V*(E).
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On the other hand, a« =0 defines a horizontal linear polarization state
(Ef) and o =90° defines a vertical linear polarization state (Ey).

2.2 Dichroism Polarization

One way to remove one of the E-field components is by absorbing that
component. This can be achieved by designing a device that performs this task
or by using a natural material that has this property [1]. In both cases, the
selective absorption of one of the E-field components is called dichroism. The
final effect on the field will be linearly polarized light.

2.2.1 Linear polarizer

To see how a dichroism-based linear polarizer works, suppose that a grid of
parallel conducting wires is constructed, as shown in Fig. 2.8, and an
unpolarized field E (natural light) is incident in a direction orthogonal to the
grid plane. Because the electric charges have the possibility of greater
displacement in the horizontal direction (along the wires) compared with the
vertical direction (cross section of the wires), there will be a greater absorption
of electric energy in the direction of the wires; thus, the net component £,
experiences a greater attenuation than the net component E,. If, ideally, the
component E, is completely attenuated, we will have a linear polarizer and the
field will have a vertical linear polarization state, Ey. The direction in which
the field is not attenuated is called the transmission axis of the linear polarizer.

Using lithographic methods, polarizers based on a grid of conductive
wires for the visible spectrum are manufactured, achieving arrangements with
a separation of 100 nm between wires. Aluminum microwires are deposited on
glass substrates.

The most common dichroic linear polarizers are made of sheets of a
special transparent plastic (polyvinyl alcohol). These sheets have been
stretched in one direction to align their long molecules, which are then

Natural
light

Ey

Figure 2.8 Linear polarizer made with a grid of conducting wires.
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grazing incidence (at the interface). This even happens with flat opaque
surfaces; e.g., if we look at a sheet of paper from a grazing angle, we can see
the specular reflection of light very well.

2.4 Polarization by Total Internal Reflection

In the previous section, we show how the orthogonal and parallel components of
the reflected field can undergo a phase change with respect to the components of
the incident field. The parallel component is reflected in phase, when 0 < 6, < 9,
and with a phase shift of £m, when 6, < 6; < /2. On the other hand, the
orthogonal component is always reflected with a phase shift of *w. This,
together with the change in amplitude of the reflected components, implies that a
linearly polarized wave when reflected remains linearly polarized but with a
rotation in the plane of vibration. When total internal reflection occurs, the
components of the reflected field have phase shifts that vary between 0 and £,
and the phase difference between the components is no longer limited to 0 or

+m. Therefore, the reflected wave can have an elliptical polarization state.

2.4.1 Total internal reflection

If the incident wave goes from a medium with a higher refractive index to one
with a lower refractive index, from a certain angle, called the critical angle, the
reflection and transmission coefficients obtain the values |ry| = |r;| =1 and
ty =t = 0. In other words, the energy of the reflected wave is equal to
the energy of the incident wave. In Section 1.1, the condition in which the
transmission ray is tangential to the interface is illustrated in Fig. 1.11. The
angle of incidence for which this occurs is [Eq. (1.5)]

0, = arcsin <E> , (2.114)

n;

with n; > n,. From this angle the phenomenon of total internal reflection
occurs.

The Fresnel equations for n; > n, and 0; < 8, apply in the same way as in
the external reflection case (n; > n,), and the only phase changes of the
reflected components with respect to the incident components are 0 or 17, as
shown in Fig. 2.17 for n,=1.5 and n,=1.0. Unlike external reflection
(Fig. 2.13), the orthogonal component does not undergo a phase change. In
contrast, the parallel component has a phase shift of +m for 0 < 6; < ), and is
in phase for 0, < 0; < 6,. The angle 0, is the angle at which the polarization
of the reflection occurs and is given by tan 6, = (n,/n;). This angle together
with the external polarization angle satisfies the relation

0, + 6, = /2. (2.115)



136 Chapter 2

Reflectance and transmittance

n N I s | L | L | L | L
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Figure 2.21 Reflectance and transmittance for internal reflection (0 < 6; < 6.) and total
internal reflection (6, < 6; < w/2).

we also have two intervals. In the first, 0 <6, <80, the transmission
coefficients are calculated according to Eqgs. (2.98) and (2.99). In the second
interval, 6, <0, <mw/2, the transmission angle is 0,=90° therefore,
according to Eq. (2.110), the transmittance for both the parallel and the
orthogonal components becomes equal to 0. Of course, it is again verified
that R + T=1 for the two components of the electric (and magnetic) fields.

2.5 Polarization with Birefringent Materials

The electric polarization vector in dielectric materials is related to the electric
field by the electric susceptibility according to Eq. (B.9):

P = ¢y)xE.

When the material is isotropic, the susceptibility quantity is described by a
scalar and the wave equation [Eq. (B.14)] is reduced to VZE = woey(1 + x)x
0’E/0f?, where v = ¢//T + x is the speed of light in the material. When the
material is anisotropic, the susceptibility is described by a tensor (3 x 3 matrix)
and the wave equation is a bit more complex.

In general, electric susceptibility can be described as

X111 X1z X13
X= 1 X211 X222 X23 > (2.130)
X31 X322 X33

“In total internal reflection, the incident energy is completely reflected. However, there is still an
electromagnetic wave beyond the interface that is rapidly fading. This wave is known as an
evanescent wave.
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Figure 2.32 Some types of polarizing prisms that separate the components of the optical
field into the “s” and “p” states. In all cases, the prisms are quartz [2].

is refracted approaching the normal. On the other hand, E! is the
extraordinary ray in the first prism; it changes to an ordinary ray when
passing to the second prism, so that on the diagonal it refracts away from the
normal. In Rochon prisms, E and E! enter the first prism along the optic
axis, so both rays will see the ordinary index. In the second prism, E{ changes
to an extraordinary ray and refracts closer to the normal. In contrast, E!
continues as an ordinary ray, so its propagation direction does not change.
Finally, in Sénarmont prisms, EX and E! also enter the first prism along the
optic axis, so both rays will see the ordinary index. In the second prism, E}
continues as an ordinary ray, so its direction of propagation does not change,
and E!' changes to an extraordinary ray and refracts closer than normal.

There are also polarizing prisms made of isotropic optical glass. These are
beamsplitter cubes with a dielectric film between the diagonals that joins the
prisms, allowing the transmission of the p-polarization state and the reflection
in the diagonal of the s-polarization state. These are mentioned briefly in
Appendix E.

2.6 Vectors and Jones Matrices

To describe the polarization state of a plane wave in Section 2.1, we use the
vector [Eq. (2.32)]

E(X, y, 23 1) = {iE, + JE, }e'=e0,

where E,, = |E,|¢® and E,, = |E, |e®. Because the temporal and spatial
phase terms are common to the complex amplitudes of the two wave
components, it is convenient to represent the state of polarization as a column
vector in which its elements determine the relationship between the
components of the wave. This representation is known as a Jones vector:

on on eiﬁx
5]- (5]
oy

oy
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Interference

Light wave interference is observed as a modulation of irradiance, usually
bright fringes and dark fringes on an observation screen. The geometry of the
fringes depends on the shape of the wavefronts and the difference in the
optical path traveled by the waves. Differences in the order of the wavelength
of light cause changes in irradiance from a bright fringe to a dark fringe,
making interference a highly accurate tool for measuring refractive indices,
wavefronts, forms of optical surfaces, thicknesses, etc. The physical parameter
that determines the quality of the interference (the possibility of generating
fringes) is the coherence between the waves. The coherence has its origin in the
fluctuations of the optical field emitted by the sources. Natural sources, like
the sun, emit spontaneously (randomly), but in artificial sources, like lasers,
the emission has a high degree of correlation.

Two interference patterns generated with a He-Ne laser are shown in
Fig. 3.1. The laser beam is focused with a positive lens into a small hole in an
opaque screen, which is seen as a point of light in the figure (point source).
The lens is behind the screen and cannot be seen in the image. The divergent
(spherical) wavefront passes through several optical elements. First, it passes
through a 1 mm thick microscope slide (flat piece of glass). There, light is
reflected from each slide face and interference occurs between the two
reflected signals, which is seen on the opaque screen (two-source interference
pattern at bottom left). This interference pattern consists of roughly circular
fringes, where the thickness of the bright fringes is similar to the thickness of
the dark fringes. This is the typical result of the interference of two sources
that emit spherical waves. The beam transmitted by the microscope slide is
then allowed to enter a Fabry-Pérot interferometer, which consists of two
thick plates of highly reflective glass parallel to each other. The separation
between the plates is less than a millimeter, and the facing faces have a thin
aluminum film that increases reflectance. This generates multiple reflections,
with similar amplitude coefficients, so there is now interference from more
than two waves. The effect on the reflected interference pattern is a thinning of
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3.2.3 Interferogram visibility

The modulation contrast of irradiance in the axial direction was defined by
Eq. (3.32). This quantity, based on the irradiances, allows the degree of
coherence to be measured. The visibility of the interference fringe pattern can
also be calculated from Eq. (3.32), where /,,,,, and I,;, are the maximum and
minimum irradiance values of the fringe pattern.

The change in visibility depends on the degree of coherence and the
relationship between the intensities of the two waves; e.g., if [y|=1, then the
visibility

NIE
C=_vV_"1° 3.39
(I, + 1) (3.39)

only depends on the ratio between /; and /,. In Fig. 3.13, three interferograms
are shown along with their profiles in the x direction when the wave
amplitudes are E| = Ey and E, = Ey, E; = Eyand E,=0.4E,, and E; = Ey and
E>=0.1E,. In the first case, I,,.x =41y, Inin =0, and C=1; in the second case,
Tax = 1.961, Iin =0.361,, and C=0.69; and in the third case, I« = 1.211,
Inin=0.811p, and C=0.20. Note that the irradiance oscillates spatially
around the mean value I; + I», which in the first case is 2/, in the second case
is 1.161,, and in the third case is 1.011,.
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Figure 3.13 Interferograms when the visibility of the fringes depends on the ratio of the
wave amplitudes: C = 1 (Ey = Egand E; = Ep), C = 0.69 (E; = Egand E; = 0.4E,), and
C = 0.20 (E; = Eg and E; = 0.1Ep). The modulus of the degree of coherence is set to
|y|=1. The scale of the axes is in millimeters.
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B Zo)\

A (3.115)

a
These results [Egs. (3.114) and (3.115)] were also obtained in Section 3.6
[Egs. (3.109) and (3.110)], in which spherical wavefronts were approximated
by planar wavefronts, an approximation also found in Young’s experiment.
With this in mind, the irradiance on the observation screen of Young’s
experiment is given by Eq. (3.104) with N=2, i.c.,

sin(kx'a/zy) 12
I=1)|———F—5~| 3.116
0 [sm(kx’ a/2zy) ( )
with Iy = (eoc/2)E}? /23, where E} is the field amplitude (per unit length) of
sources S; and S,. Using the trigonometric identity sin(2a) =2 sin « cos « in
the numerator of Eq. (3.116) leads to

=4I, {cos(w—ix’ﬂz. (3.117)

20

Another approximate way to determine the irradiance is obtained
directly from Fig. 3.57(c). Taking into account the condition z, > a, the

field at P due to S; is E1(P) = (E}/z)e and the field at P due to S, is
E,(P) = (ES /z0)e™*>. Therefore, the irradiance at P, given by I = (eyc/2)|
E\(P) + E5(P)|>, would be

I = 2I,[1 + cos(k(s, — s1))]. (3.118)

Approximating s, — s; &~ aa =~ ax’/z, leads to

2
1:210[1+cos<)\lax’>], (3.119)

20
which is equivalent to Eq. (3.117).

3.8.1 Division of wavefront and division of amplitude

In Young’s interferometer there is a remarkable fact as to how to generate the
two secondary sources S; and S, compared with the Michelson interferometer.
In the Michelson interferometer (as in the plate with parallel faces), the
secondary sources are virtual images of a primary source obtained by the
beamsplitter and the mirrors M; and M, (Fig. 3.18). The beamsplitter divides
the amplitude of the incident wave (into a reflected wave and a transmitted
wave). Interferometers based on this principle are also called amplitude-
splitting interferometers. In contrast, in Young’s interferometer, the secondary
sources S; and S, are obtained by isolating regions of the wavefront emitted
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Diffraction

Diffraction, like interference, is a wave phenomenon. From a mathematical
point of view, the difference between interference and diffraction lies in the
number of sources that generate the interference waves. In interference there is
a discrete number of sources, whereas in diffraction there is a continuous
number of sources. In terms of the behavior of the optical field, diffraction is
considered the deviation of the rectilinear path (of light) that is not due to
reflection or refraction.

In this chapter, diffraction is limited to the paraxial range, i.e., Fresnel
diffraction and Fraunhofer diffraction. Detailed examples of diffraction by a
circular aperture and by a rectangular aperture are given. With diffraction
through a circular aperture, the formation of the image is analyzed taking into
account the wave nature of light; with diffraction through a rectangular
aperture, the basic mathematics for one-dimensional diffraction gratings are
developed.

The image of a point object (monochromatic) generated by an optical
system that models a human eye with myopia, astigmatism, and spherical
aberration is shown in Fig. 4.1. The effect of diffraction and aberrations
reduces visual acuity in the human eye and generally reduces resolution in
imaging systems.

Note on calculated diffraction patterns

Except for Section 4.5.2, which deals with image resolution, calculated
diffraction patterns are shown in this chapter as grayscale images that represent
the square root of the irradiance distribution. This allows regions of lower
intensity to be highlighted. Plots of the irradiance profiles are shown at scale.

4.1 Huygens—Fresnel Principle

Huygens’ principle, discussed in Section 1.1.3, states that every point on a
wavefront can be considered as a source of secondary spherical waves that
propagate with the same speed as the wavefront. After a while, the propagated
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(a)

(b)

Figure 4.7 Fresnel zonal plates to block (a) even and (b) odd zones.

//z

Figure 4.8 The phase zone plate takes advantage of the entire optical field 3 and
constructively interferes with the fields contained in the odd and even Fresnel zones.

4.2 Diffraction Integral

Diffraction involves finding the optical field at any point in space generated
by a source with boundary conditions. The typical geometry in diffraction is
illustrated in Fig. 4.9. In region I, the source S (point-like or extended) is
located; in region II, the volume is limited by the closed surface 3 = 3| + X,
in which the optical field is measured. Region II is called the diffraction region.
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Gaussian profile in millimeters and is taken as the radius of the coherence
region. In the experiment, the opening gap varies from 2 to 12 mm in steps of
2 mm. By examining the profile of the interferograms in the horizontal
direction (x), curves similar to those shown in Fig. 4.25 are obtained. When
a = 12 mm, there is no more interference. Note that in these images no
interference rings are observed [as shown in the simulated pattern in Fig.
4.23(a)]. This occurs because in practice, the maximum irradiance of the first
ring is very small with respect to the maximum of the central region, as can be
seen in the profile of Fig. 4.23(b).

From the lessons learned in this section, one can imagine how careful
Thomas Young was to look at the interference fringes, which must be colored
if the primary source is the sun.

4.5 Image Formation with Diffraction

According to geometrical optics, the image of a point formed by an optical
system free of optical aberrations is also a point. Suppose the point object
is located on the optical axis. The spherical wavefront that diverges from
the object when passing through the optical system will be truncated by the
aperture diaphragm; i.e., the diaphragm plays the role of the aperture that
diffracts the light. This implies that the image cannot be a point. On the other
hand, the image of a large object will depend on the spatial coherence of
the optical field in the object. This section briefly deals with the topic of
imaging by taking diffraction into account in the paraxial approximation
(Fresnel/Fraunhofer diffraction).”

4.5.1 Image of a point (source) object

Let us consider the system shown in Fig. 4.27. The thin lens represents the
imaging optics, and the edge of the lens is the aperture diaphragm. The lens
introduces a phase delay in the wavefront as it passes through the diaphragm.
With this in mind, the lens can be modeled as a complex variable
transmittance that changes the phase of the incident wavefront at the
diaphragm. Thus, the process of image formation of a point object can be
described as follows: a spherical wavefront that diverges from the point object
is truncated by the aperture diaphragm and undergoes a phase shift due to the
transmittance of the lens, then converges as a diffraction pattern in the
Gaussian image plane.

In Fig. 4.27, —s, and s; are the object and image distances from the thin
lens in the plane of the aperture (diaphragm). The phase of the optical field
(diverging from the point object) just before the aperture would be

“For a detailed discussion of the problem of imaging, by taking diffraction into account, see
Goodman [6].
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