Extreme-ultraviolet (EUV) lithography is a crucial technology in semiconductor manufacturing, and the development of effective pellicles is essential to prevent mask contamination and ensure patterning accuracy. Traditional approaches to improving pellicle transmittance have faced limitations, prompting exploration into novel strategies such as CNT, graphitelike film, or structural modification. In this study, we investigate the mechanical stability and imaging impact of porous pellicles, which can overcome the limitations of conventional structures. Our findings reveal that while porous pellicles induce stress variations, overall residual stress is almost maintained. Imaging simulations demonstrate minimal impact on pattern fidelity, highlighting compatibility with existing lithographic systems. Additionally, we fabricated the silicon nitride porous pellicles and measured EUV transmittance. Experimental results confirm significant increases in EUV transmittance with porous structures, validating their potential for next-generation lithography applications.
|