SignificanceInformation about the spatial organization of fibers within a nerve is crucial to our understanding of nerve anatomy and its response to neuromodulation therapies. A serial block-face microscopy method [three-dimensional microscopy with ultraviolet surface excitation (3D-MUSE)] has been developed to image nerves over extended depths ex vivo. To routinely visualize and track nerve fibers in these datasets, a dedicated and customizable software tool is required.AimOur objective was to develop custom software that includes image processing and visualization methods to perform microscopic tractography along the length of a peripheral nerve sample.ApproachWe modified common computer vision algorithms (optic flow and structure tensor) to track groups of peripheral nerve fibers along the length of the nerve. Interactive streamline visualization and manual editing tools are provided. Optionally, deep learning segmentation of fascicles (fiber bundles) can be applied to constrain the tracts from inadvertently crossing into the epineurium. As an example, we performed tractography on vagus and tibial nerve datasets and assessed accuracy by comparing the resulting nerve tracts with segmentations of fascicles as they split and merge with each other in the nerve sample stack.ResultsWe found that a normalized Dice overlap (Dicenorm) metric had a mean value above 0.75 across several millimeters along the nerve. We also found that the tractograms were robust to changes in certain image properties (e.g., downsampling in-plane and out-of-plane), which resulted in only a 2% to 9% change to the mean Dicenorm values. In a vagus nerve sample, tractography allowed us to readily identify that subsets of fibers from four distinct fascicles merge into a single fascicle as we move ∼5 mm along the nerve’s length.ConclusionsOverall, we demonstrated the feasibility of performing automated microscopic tractography on 3D-MUSE datasets of peripheral nerves. The software should be applicable to other imaging approaches. The code is available at https://github.com/ckolluru/NerveTracker.
Vagus nerve stimulation (VNS) is a method to treat drug-resistant epilepsy and depression, but therapeutic outcomes are often not ideal. Newer electrode designs such as intra-fascicular electrodes offer potential improvements in reducing off-target effects but require a detailed understanding of the fascicular anatomy of the vagus nerve. We have adapted a section-and-image technique, cryo-imaging, with UV excitation to visualize fascicles along the length of the vagus nerve. In addition to offering optical sectioning at the surface via reduced penetration depth, UV illumination also produces sufficient contrast between fascicular structures and connective tissue. Here we demonstrate the utility of this approach in pilot experiments. We imaged fixed, cadaver vagus nerve samples, segmented fascicles, and demonstrated 3D tracking of fascicles. Such data can serve as input for computer models of vagus nerve stimulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.