We report on fabrication, structure, spectroscopic and nonlinear properties of a new functional optical material – transparent glass-ceramics (GCs) based on Co2+,Ga3+-codoped ZnO (Co2+:GZO) nanocrystals. The introduction of Ga3+ cations that are smaller than Zn2+ ones and have a different valence state, is expected to modify the crystal field around the Co2+ ions leading to broadband absorption at the 4A2(4F) → 4T1(4F) transition. The glass of the ZnO – K2O – Al2O3 – SiO2 system was doped with 3 mol% Ga2O3 and 0.05 mol% CoO. Transparent GCs were produced by secondary heattreatments at 680 – 860 °C. They contained one crystalline phase - nanosized (8 – 26 nm) hexagonal GZO crystals, Ga3+ ions being distributed between the ZnO nanocrystals and the residual glass. The absorption spectra of GCs contained an intense band at 1.3-1.65 μm related to the 4A2(4F) → 4T1(4F) Co2+ transition in Td sites. A rise of IR losses due to the free charge carrier scattering in GZO was observed. Absorption saturation of transparent GCs was studied at ~1.54 μm. They exhibited low saturation fluence, 0.7–1.3 ± 0.2 J/cm2, and high laser-induced damage threshold, ~25 J/cm2. Co2+,Ga3+- codoped ZnO-based transparent GCs are promising for passive Q-switching of eye-safe erbium lasers emitting at ~1.5- 1.7 μm.
We report on the first laser operation of a novel double molybdate compound, Yb:KY(MoO4)2. Single-crystals were grown by the Low Temperature Gradient (LTG) Czochralski method. The crystal structure (orthorhombic, sp. gr. Pbna – D142h) was refined with the Rietveld method. Yb:KY(MoO4)2 exhibits a layered structure leading to a strong optical anisotropy and a perfect cleavage along the (100) plane. The stimulated-emission cross-section for Yb3+ ions is 3.70×10-20 cm2 at 1008.0 nm and the emission bandwidth is 37 nm (for light polarization E ||b). Continuous-wave laser operation is achieved in a 3 at.% Yb:KY(MoO4)2 crystal plate (thickness: 286 μm) under diode pumping. The microchip laser generated a maximum output power of 0.81 W at 1021-1044 nm with a slope efficiency of 76.4% and linear polarization. Yb:KY(MoO4)2 crystal films / plates are attractive for sub-ns passively Q-switched microchip lasers and thin-disk lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.