The polarimetric zero-level accuracy of spectropolarimetric measurements with ground-based solar telescopes usually suffers from systematic telescopic and instrumental effects which are difficult to model, and therefore, cannot be easily removed during post-measurement data reduction. Here, a novel measurement method to enhance the zero-level accuracy to an unprecedented level of such compromised measurements is presented. The method is comprised of adding a slow polarization modulation (< 1 Hz) before any polarizing component of the telescope to a high-sensitivity polarimeter with fast modulation (> 1 kHz). This additional slow modulation significantly mitigates systematic instrumental polarization signals induced by the telescope and post-focus instruments such as polarimetric offsets or cross-talk between polarization states. We present the results and limitations learned from implementing the method at the 45 cm Gregory-Coudé telescope at IRSOL, Locarno. The slow modulation is performed with a low-cost zero-order retarder film mounted in front of the telescope and is combined with the fast modulating Z¨urich IMaging POLarimeter (ZIMPOL). We find that the ground zero of polarization normalized to the intensity is determined within a few 10−5 . This level is consistently achieved over a wide wavelength range in the visible. An improvement of up to a few orders of magnitude for cases where the polarization offset induced by the telescope is as high as 10−2 is achieved. This measurement technique allows for enhancing the zero-level accuracy of solar polarimetry, which is crucial for scattering polarization measurements and their theoretical interpretations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.