Detection of a known target in an image can be accomplished using several different approaches. The complexity and number of steps involved in the target detection process makes a comparison of the different possible algorithm chains desirable. Of the different steps involved, some have a more significant impact than others on the final result-the ability to find a target in an image. These more important steps often include atmospheric compensation, noise and dimensionality reduction, background characterization, and detection (matched filtering for this research). A brief overview of the algorithms to be compared for each step will be presented. This research seeks to identify the most effective set of algorithms for a particular image or target type. Several different algorithms for each step will be presented, to include ELM, FLAASH, MNF, PPI, MAXD, the structured background matched filters OSP, and ASD. The chains generated by these algorithms will be compared using the Forest Radiance I HYDICE data set. Finally, receiver operating characteristic (ROC) curves will be calculated for each algorithm chain and, as an end result, a comparison of the various algorithm chains will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.