KEYWORDS: Perceptual learning, Human vision and color perception, Computer generated holography, Visualization, Holograms, Holography, 3D displays, Prototyping, Optical simulations, Image quality, 3D acquisition, Image restoration
Computer-Generated Holography (CGH) promises to deliver genuine, high-quality visuals at any depth. We argue that combining CGH and perceptually guided graphics can soon lead to practical holographic display systems that deliver perceptually realistic images. We propose a new CGH method called metameric varifocal holograms. Our CGH method generates images only at a user’s focus plane while displayed images are statistically correct and indistinguishable from actual targets across peripheral vision (metamers). Thus, a user observing our holograms is set to perceive a high quality visual at their gaze location. At the same time, the integrity of the image follows a statistically correct trend in the remaining peripheral parts. We demonstrate our differentiable CGH optimization pipeline on modern GPUs, and we support our findings with a display prototype. Our method will pave the way towards realistic visuals free from classical CGH problems, such as speckle noise or poor visual quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.