This work is the result of a study of the impact of photonic technologies on increasing productivity in agriculture. Mathematical models are presented that consider how external optical radiation affects the growth and productivity of crops. Analytical expressions are proposed for the distribution of the electromagnetic field inside a spherical grain. The model must take into account not only the characteristics of the incident field, but also the electrical and geometric characteristics of the cereal grains themselves. A model is considered when a light wave is incident on a spherical surface, the length of which is less than the size of the sphere by about three orders of magnitude. Also, based on the calculations, photonic matrices of the matrix for experiments were made. The main stages of system analysis of an automated control system for low-energy LED radiation are graphically presented.
This article illustrates the method and system of polarization mapping of two-dimensional length distributions of individual Mueller-matrix images of biological layers, which are azimuthally independent with respect to the direction of their laser irradiation. The intellectual analysis of the named distributions involves the determination of their informative features as statistical and correlation moments of the 1st to 4th order, according to which their further classification is implemented on the basis of binomial logistic regression. The improved system with expanded functionality allowed to obtain an assessment of the reliability of the diagnosis of the pathology of the cervix at the level of 90% to 97.8%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.