The Ku-/Ka-band, Doppler, scanning, polarimetric airborne radar, known as the Airborne Dual-Frequency Precipitation
Radar (APR-2) has been collecting data since 2001 in support of many spaceborne instruments and missions aiming at
the observation of clouds and precipitation (e.g., TRMM, AMSR-E, GPM, CloudSat, ACE). The APR-2 suite of
processing and retrieval algorithms (ASPRA) produces Level 1 (L1) products, microphysical classification and retrievals,
and wind intensity estimates. ASPRA was also generalized to operate on an arbitrary set of radar configuration
parameters to study the expected performance of multi-frequency spaceborne cloud and precipitation radars such as the
GPM DPR (Global Precipitation Measurement mission, Dual-Frequency Precipitation Radar) and a notional radar for the
Aerosol/Clouds/Ecosystem (ACE) mission.
In this paper we illustrate the unique dataset collected during the Global Precipitation Measurement Cold-season
Precipitation Experiment (GCPEx, US/Canada Jan/Feb 2012). We will focus on the significance of these observations
for the development of algorithms for GPM and ACE, with particular attention to classification and retrievals of frozen
and mixed phase hydrometeors.
KEYWORDS: Actuators, Ferroelectric polymers, Reflectors, Control systems, Antennas, Polymers, Electrodes, Control systems design, Finite element methods, Electroactive polymers
Extremely large, lightweight, in-space deployable active and passive microwave antennas are demanded by future
space missions. This paper investigates the development of PVDF based piezopolymer actuators for controlling the
surface accuracy of a membrane reflector. Uniaxially stretched PVDF films were poled using an electrodeless
method which yielded high quality poled piezofilms required for this applications. To further improve the
piezoperformance of piezopolymers, several PVDF based copolymers were examined. It was found that one of
them exhibits nearly three times improvement in the in-plane piezoresponse compared with PVDF and P(VDF-TrFE)
piezopolymers. Preliminary experimental results indicate that these flexible actuators are very promising in
controlling precisely the shape of the space reflectors. To evaluate quantitatively the effectiveness of these PVDF
based piezopolymer actuators for space reflector applications, an analytical approach has been established to study
the performance of the coupled actuator-reflector-control system. This approach includes the integration of a
membrane reflector model, PVDF piezopolymer actuator model, solution method, and shape control law. The reflective Newton method was employed to determine the optimal electric field for a given actuator configuration and loading/shape error.
KEYWORDS: Clouds, Space operations, Radar, Antennas, Atmospheric modeling, Receivers, Microwave radiation, Data modeling, Calibration, Decision support systems
CloudSat is a NASA ESSP (Earth System Science Pathfinder Mission) that provides from a space the first global survey of cloud profiles and cloud physical properties, with seasonal and geographical variations. The data obtained will allow for clouds and cloud processes to be more accurately represented in global atmospheric models leading to improved climate change predictions, and eventually, weather forecasting. To achieve this ambitious goal, JPL (Jet Propulsion Laboratory) in collaboration with CSA (Canadian Space Agency) designed, developed, and tested a 94.05 GHz, W-band, microwave cloud profiling radar system derived from current ground-based and airborne systems. The CloudSat Project team is witnessing how well the instrument performs during in-flight operations with the recent successful launch. Although Level 1 (i.e. radiometric-corrected and geo-located) and Level 2 (i.e. retrieved geophysical parameters) science data products will not be released until the January 2007 timeframe, the yet uncalibrated and unvalidated "quick look" products, available to the general public on the CloudSat Data Processing Center website, provide every indication that the mission objectives will be met.
In conjunction with the implementation of spaceborne atmospheric radar flight missions, NASA is developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with the over-arching objectives of making such instruments more capable in supporting future science needs, and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a real-time digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while using only a fraction of the mass of the current TRMM PR. NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar with the intent of providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall. Technologies for NIS are synergistic with those for PR-2. During the last two years, several of the technology items associated with these notional instruments have also been prototyped. This paper will give an overview of these instrument design concepts and their associated technologies.
KEYWORDS: Doppler effect, Radar, Antennas, Signal to noise ratio, Velocity measurements, Satellites, Turbulence, Monte Carlo methods, Spectral resolution, Atmospheric particles
Knowledge of the global distribution of the vertical velocity of precipitation is important in the study of energy transportation in the atmosphere, the climate and weather. Such knowledge can only be directly acquired with the use of spaceborne Doppler precipitation radars (DPR). Although the high relative speed of the radar with respect to the rainfall particles introduces significant broadening in the Doppler spectrum, recent studies have shown that the average vertical velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthermore, methods to correct for specific errors arising from non-uniform beam filling (NUBF) effects and pointing uncertainties have recently been developed. In this paper we will present the results of the trade studies on the performances of a spaceborne Doppler radar with different system parameters configurations. Particular emphases will be placed on the choices of: 1) the PRF vs. antenna size ratio, 2) the observational strategy, 3) the operating frequency; and 4) processing strategy. The results show that accuracies of 1 m/s or better can be achieved with the currently available technology.
Backscattering enhancement from random hydrometeors should increase
as wavelengths of radars reach millimeter regions. For 95 GHz radars,
the reflectivity of backscattering is expected to increase by 2 dB,
due to multiple scattering including backscattering enhancement, for
water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.
KEYWORDS: Radar, Doppler effect, Reflectivity, Calibration, Ku band, Ka band, Detection and tracking algorithms, Algorithm development, Antennas, Data processing
Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission1, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2)2, has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission3. This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. Furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna.
Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the melting layer of precipitation is detected and its boundaries and characteristics are identified at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics. In this paper the processing approach is described in detail together with an overview of the resulting data quality and known issues.
Knowledge of the global distribution of the vertical velocity of precipitation is important for estimating latent heat fluxes, and therefore in the general study of energy transportation in the atmosphere. Such knowledge can only be acquired with the use of spaceborne Doppler precipitation radars. Recent studies have shown that the average vertical velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthermore, methods to correct for specific errors arising from Non-Uniform Beam Filling effects and pointing uncertainties have recently been developed. As detailed in the Global Precipitation Mission (GPM) preparatory studies, the use of a dual-frequency precipitation radar allows improved estimation of the main parameters of the hydrometeor size distribution (bulk quantity and one shape parameter). Such parameters, in turn, lead to improved estimates of latent heat fluxes. In this paper we address the performance of a dual- frequency Doppler Precipitation Radar (DDPR) in estimating the latent heat fluxe from the measured rainfall vertical velocity and DSD parameters.
In this paper we present a sea surface radar echo spectral analysis technique to correct for the rainfall velocity error caused by radar pointing uncertainty. The correction procedure is quite straightforward when the radar is observing a homogeneous rainfall field. On the other hand, when NUBF occurs and attenuating frequencies are used, additional steps are necessary in order to correctly estimate the antenna pointing direction. This new technique relies on the application of Combined Frequency-Time (CFT) algorithm to correct for uneven attenuation effects on the observed sea surface Doppler spectrum. The performance of this correction technique was evaluated by Monte Carlo simulation of the Doppler precipitation radar backscatter model, and the high-resolution 3D rain fields generated by a cloud resolving numerical model. Our preliminary results show that the antenna pointing induced error can indeed be successfully removed by the proposed technique.
Global rainfall is the primary distributor of latent heat through atmospheric circulation. This important atmospheric parameter can only be measured reliably from space. The on-going Tropical Rainfall Measuring Mission (TRMM) is the first space based mission dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided exciting, new data on the 3-D rain structures for a variety of scientific applications. The continuous success of TRMM has led to new development of the next generation of spaceborne satellites and sensors for global rainfall and hydrological parameter measurements. From science and cost efficiency prospective, these new sensing instruments are expected to provide enhanced capabilities and reduced consumption on the spacecraft resources. At NASA, the Earth Science Enterprise has strengthened its investment on instrument technologies to help achieving these two main goals and to obtain the best science values from the new earth science instruments. It is with this spirit that a notional instrument concept, using a dual-frequency rain radar with a deployable 5-meter electronically-scanned membrane antenna and real-time digital signal processing, is developed. This new system, the Second Generation Precipitation Radar (PR-2), has the potential of offering greatly enhanced performance accuracy while using only a fraction of the mass of the current TRMM PR. During the last two years, several of the technology items associated with this notional instrument have also been prototyped. In this paper, the science rationales, the instrument design concept, and the technology status for the PR-2 notional system will be presented.
In this paper an in-depth analysis on the performance of the Fourier analysis in estimating the first moment of Doppler spectra of rain signals from a spaceborne radar is presented. Spectral moments estimators based on Fourier analysis (DFT-SME) have been widely used by Doppler weather radars in measuring rainfall velocity and they have been found to be almost optimal for narrow normalized spectral widths (wN). They are also more computationally efficient than the Maximum Likelihood estimators. However, the existing analytical approaches for evaluating the DFT-SME performance have mostly been focused on a limited range of small wN (e.g., wN< 0.1) that are typical of ground based and airborne Doppler weather radars. With the rapid advances in spaceborne radar technologies, the flying of a Doppler precipitation radar in space to acquire global data sets of vertical rainfall velocity has become a real possibility. The objective of this work is to develop a generalized analytical approach by extending it to cover larger values of wN (e.g., wN ~ 0.2) in spaceborne radar applications. In particular, a method has been developed to properly treat the aliasing effects, which have become a significant error source in spaceborne applications. Several DFT-SME algorithms (differing in the adopted strategy for noise handling and the initial estimate of the mean Doppler velocity) have been analyzed with this generalized approach. The analytical results are in excellent agreement with those obtained through simulation. Such encouraging results suggest that the proposed approach is a reliable technique for fast and accurate prediction of DFT-SME performance for spaceborne Doppler weather radars.
A sampling strategy and a signal processing technique are proposed to overcome Non Uniform Beam Filling (NUBF) errors on mean Doppler velocity measurements made by spaceborne weather radars. Effects of non uniformity of rainfall within the main antenna lobe in terms on the accuracy of standard estimators are first briefly shown, so as to point out that the bias introduced by NUBF on mean Doppler velocity estimates can be greater than the standard deviation of the estimated velocity, and that it depends on the along-track distribution of reflectivity. Then the sampling strategy is described, based on an oversampling of the integrated data in the along-track direction in order to retrieve information about the reflectivity pattern at the sub-beam scale. The proposed processing technique, named Combined Frequency-Time (CFT) technique, exploits the time series of spectra at fixed range to resolve the NUBF induced bias. The results and the evaluation of performances achievable by means of CFT, were obtained by applying a 3D spaceborne Doppler radar simulator to a 3D dataset of reflectivity and mean Doppler velocity measured through the NASA/JPL airborne Doppler radar ARMAR. The radar system considered here is a nadir-looking, Ku band radar with a sufficiently wide antenna. It is shown how the error on mean Doppler velocity estimates can be reduced by means of CFT to the level predicted for such a radar system in the case of uniformly filled resolution volume (UBF).
KEYWORDS: Radar, Doppler effect, Reflectivity, Antennas, Satellites, Particles, Statistical analysis, Meteorology, Signal processing, Signal to noise ratio
This paper studies the performance of a spaceborne precipitation radar in measuring vertical Doppler velocity of rainfall. As far as a downward pointing precipitation radar is concerned, one of the major problems affecting Doppler measurement at the nadir direction arises from the Non-Uniform Beam-Filling effect (NUBF). That is, when significant variation in rain rate is present within the radar IFOV in the along track direction. The Doppler shift caused by the radial component of the horizontal speed of the satellite is weighted differently among the portions of IFOV. The effects of this non-uniform weighting may dominate any other contribution. Under this condition, shape, average value and width of the Doppler spectrum may not be directly correlated with the vertical velocity of the precipitating particles. However, by using an inversion technique which over-samples the radar measurements in the along track direction, we show that the shift due to NUBF can be evaluated, and that the NUBF induced errors on average fall speed can be reduced.
The spacecraft of Cassini Mission will be launched towards Saturn in 1997 in order to study the physical structure and chemical composition of Saturn as well as all its moons. To this end many instruments will be mounted on the spacecraft; one of these is the Cassini Radar. Cassini Radar is a cooperative project between National Aeronautics and Space Administration (NASA/Jet Propulsion Laboratory (JPL) and Italian Space Agency (ASI). ASI has committed to Alenia Spazio the design, integration and test of the radio frequency subsystem, while the digital subsystem is the responsibility of JPL. Cassini Radar is a multimode instrument able to operate in an imaging mode (0.85 and 0.425 MHz bandwidth), a scatterometer mode (0.106 MHz bandwidth), and a radiometer mode (100 MHz bandwidth). These modes will be used to acquire images, topographic profile, backscatter reflection coefficient, and sense brightness temperatures of the surface of Titan. Main test results are reported and discussed to demonstrate that the instrument satisfies the mission requirements.
A conceptual design for a mid-latitude orbiting precipitation and cloud mapping radar is discussed. In this conceptual design the radar utilizes a narrow, dual-frequency beam, electronically scanned antenna to achieve 4-km spatial resolution and 300-km cross-track swath. Vertical resolution of 500 m is achieved by short-pulse transmission. It is expected that such system can measure rain rates up to 100 mm/hr for precipitation at the cloud base, surface precipitation up to 20 mm/hr, and cloud reflectivities as low as -39 dBz. By averaging over 100 independent samples, signal reflectivities can be estimated to better than 20 percent. Other rain and cloud characteristics, such as height, thickness, and cell size, can also be extracted from the data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.