Variation of lasing wavelength with temperature is a key factor to determine packaging thermal resistance in laser diodes. Using proprietary mounting technology that clamps laser bars instead of using soldering material we can precisely control the stress applied on the laser bars. We experimentally demonstrate that uniaxial stress in the normal direction of the p-n junction (which results in tensile stress in the lattice) increases the temperature characteristic of laser diodes. We report a temperature characteristic raise between 10% and 50% under different stress conditions.
We developed a 1kW cw fiber-coupled diode laser at 9XX nm by using beam combining of eight high power diode laser bars. To achieve beam combining, we employ Lyot-filtered optical reinjection from an external cavity, which forces lasing of the individual diode laser bars on intertwined frequency combs with overlapping envelopes and enables a high optical coupling efficiency. Unlike other spectral beam combining techniques that are based on the use of grating elements, this technique is insensitive to the thermal drift of the laser diodes. In addition to this, the FWHM spectral width at 1 kW output power is only around 7 nm, which is convenient for wavelength sensitive applications such as pumping.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.