P. Kaufmann, A. Abrantes, E. C. Bortolucci, E. Correia, J. A. Diniz, G. Fernandez, L. O. T. Fernandes, C. G. Giménez de Castro, R. Godoy, G. Hurford, A. S. Kudaka, M. Lebedev, R. Lin, N. Machado, V. S. Makhmutov, R. Marcon, A. Marun, V. Nicolaev, P. Pereyra, J.-P. Raulin, C. M. da Silva, A. Shih, Y. Stozhkov, J. Swart, A. Timofeevsky, A. Valio, T. Villela, M. B. Zakia
A new solar flare spectral component has been found with intensities increasing for larger sub-THz frequencies,
spectrally separated from the well known microwaves component, bringing challenging constraints for interpretation.
Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A twofrequency
THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons
or satellites, or at exceptionally transparent ground stations. 76 mm diameter telescopes were designed to observe the
whole solar disk detecting small relative changes in input temperature caused by flares at localized positions at 3 and 7
THz. Golay cell detectors are preceded by low-pass filters to suppress visible and near IR radiation, band-pass filters,
and choppers. It can detect temperature variations smaller than 1 K with time resolution of a fraction of a second,
corresponding to small burst intensities. The telescopes are being assembled in a thermal controlled box to which a data
conditioning and acquisition unit is coupled. While all observations are stored on board, a telemetry system will forward
solar activity compact data to the ground station. The experiment is planned to fly on board of long-duration
stratospheric balloon flights some time in 2013-2015. One will be coupled to the GRIPS gamma-ray experiment in
cooperation with University of California, Berkeley, USA. One engineering flight will be flown in the USA, and a 2
weeks flight is planned over Antarctica in southern hemisphere summer. Another long duration stratospheric balloon
flight over Russia (one week) is planned in cooperation with the Lebedev Physics Institute, Moscow, in northern
hemisphere summer.
CANOPUS is the facility instrument for the Gemini Multi Conjugate Adaptive Optics System (GeMS) wherein all the
adaptive optics mechanisms and associated electronic are tightly packed. At an early stage in the pre-commissioning
phase Gemini undertook the redesign and implementation of its chilled Ethylene Glycol Water (EGW) cooling system to
remove the heat generated by the electronic hardware. The electronic boards associated with the Deformable Mirrors
(DM) represent the highest density heat yielding components in CANOPUS and they are also quite sensitive to
overheating. The limited size of the two electronic thermal enclosures (TE) requires the use of highly efficient heat
exchangers (HX) coupled with powerful yet compact DC fans.
A systematic approach to comply with all the various design requirements brought about a thorough and robust solution
that, in addition to the core elements (HXs and fan), makes use of features such as high performance vacuum insulated
panels, vibration mitigation elements and several environment sensors. This paper describes the design and
implementation of the solution in the lab prior to delivering CANOPUS for commissioning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.