There is a need for high-power narrow-linewidth, small footprint, highly coherent diode lasers at various wavelengths (400-1800 nm) that can be utilized in many areas of photonics including fiber laser seeding, remote sensing, biomedical imaging, atomic clocks, quantum computing, THz spectroscopy, Raman spectroscopy, optical trapping, etc. Volume Bragg Grating (VBG) stabilized Fabry-Perot (FP) semiconductor lasers offer a versatile and robust platform for these applications. A Scanning Fabry-Perot Interferometer (FPI) is implemented for in-situ VBG alignment for these hybrid external cavity lasers (HECLs) in high volume production. Utilizing this method, it is possible to isolate a Single Longitudinal Mode (SLM) of a single spatial mode semiconductor laser with very narrow linewidth. The typical laser linewidth during the production process is measured to be 0.01 nm with an Optical Spectrum Analyzer (OSA) and a few MHz with the FPI, both of which were limited by the resolution of the instrument. However, the actual linewidth of these high-power lasers (up to 450 mW fiber-coupled and 600 mW free space) are measured in final testing using the heterodyne beat note method. These measurements show that these VBG-locked single spatial mode FP lasers have Lorentzian linewidth of less than 100 kHz. The result of narrower laser linewidth is achieved due to the effect on the external cavity feedback and the increased cavity length. The linewidths of these wavelength stabilized lasers between 633 nm and 1064 nm are presented here and the input of the isolator, laser driver electronics and temperature controller on linewidth are studied and discussed as a function of optical power, laser temperature, and wavelength.
KEYWORDS: Polarization, Resistance, Quantum wells, Indium, Temperature metrology, High power lasers, Data modeling, Thermal modeling, Diodes, Laser welding
As diode pumped solid state lasers gain more market share, the performance, stability and lifetime of the diode pump
source faces unprecedented scrutiny. Lifetimes of diode pumps in excess of 35,000 hrs are sought with no intervention
or maintenance from the end user. One lifetime and power limiting phenomena for arrays is that of solder creep typical
with traditional mounting using soft solders such as Indium. Harder solders such as Gold/Tin on Copper-Tungsten
submounts provide a more robust and stable mounting system for long term high power pump sources. Furthermore,
beam multiplexing of laser bars require tight wavelength and polarization purity which are affected by mounting induced
strain. In this investigation, high power 940 nm laser bars, operating in the 100 to 200 W power range, were mounted
using AuSn/CuW and In soldering schemes. The differences in thermal and strain characteristics are investigated
through the examination of the emitter wavelength, nearfield measurements, polarization and smile. The measurements
are correlated with finite element modeling to predict the 3-dimensional thermal distributions within the laser bars.
The materials processing industry has recently mandated the need for more efficient laser systems with higher beam quality and longer life. Current multiplexing techniques, state-of-the-art laser diodes and novel cooling designs are now emerging as possibilities to meet the ever demanding industry needs. This paper describes the design and initial results of a direct diode system that is aimed at delivering 1.5 kW of output power and a beam divergence of 40 mm mrad on a long life macro-channel cooler. The design entails multiplexing 2 wavelength combined beams and 2 polarization combined beams. Each of the four branches of the direct diode system utilizes a novel stacking and cooling design. The results from one of these branches, 1 wavelength and 1 polarization, are presented where the light is coupled into a fiber with a 400 μm core diameter and a NA of 0.22. Each branch consists of 60 diode laser mini-arrays, where each mini-array consists of four 100 μm wide emitters and a lateral fill factor of 50%. An output power of 500W at 10°C water temperature and 420 W at 25°C are demonstrated through the 400 μm fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.