Liquid Based Cytology (LBC) is an effective technique for cervical cancer screening through the Papanicolaou (Pap) test. Currently, most LBC screening is done by cytologists, which is very time consuming and expensive. Reliable automated methods are needed to assist cytologists to quickly locate abnormal cells. State of the art in cell classification assumes that cells have already been segmented. However, clustered cells are very challenging to segment. We noticed that in contrast to cells, nuclei are relatively easier to segment, and according to The Bethesda System (TBS), the gold standard for cervical cytology reporting, cervical cytology abnormalities are often closely correlated with nucleus abnormalities. We propose a two-step algorithm, which avoids cell segmentation. We train a Mask R-CNN model to segment nuclei, and then classify cell patches centered at the segmented nuclei in roughly the size of a healthy cell. Evaluation with a dataset of 25 high resolution NDPI whole slide images shows that nuclei segmentation followed by cell patch classification is a promising approach to build practically useful automated Pap test applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.