In this work, an individual nanowire of zinc oxide (ZnO-NW), decorated with gold nanoparticles (Au-NPs/ZnO-NW), was integrated in a nanophotodetector using a dual beam focused electron/ion beam (FIB/SEM) system. Au-NPs/ZnO-NW arrays were synthesized by one-step electrochemical deposition at relative low-temperatures (90 °C). The nanodevice fabricated with a single nanowire Au-NPs/ZnO-NW demonstrated fast detection of UV radiation up to the operating temperature of 120 °C. The improved UV sensing properties of an individual Au-NPs/ZnO-NW compared to a single, undecorated, ZnO NW was explained based on the formation of Schottky barriers at the Au/ZnO NW interface, which resulted in a much more narrowed conduction channel and a lower dark current. These results prove that high-performance hybrid nanomaterials may possess superior electrical, optical and sensing properties and are of great interest for further fundamental studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.