KEYWORDS: Image segmentation, Image processing algorithms and systems, Signal to noise ratio, Binary data, Cameras, Feature extraction, Lithium, Sensors, 3D vision, Stereo vision systems
Low-light stereo vision is a challenging problem because images captured in dark environment usually suffer from strong random noises. Some widely adopted algorithms, such as semiglobal matching, mainly depend on pixel-level information. The accuracy of local feature matching and disparity propagation decreases when pixels become noisy. Focusing on this problem, we proposed a matching algorithm that utilizes regional information to enhance the robustness to local noisy pixels. This algorithm is based on the framework of ADCensus feature and semiglobal matching. It extends the original algorithm in two ways. First, image segmentation information is added to solve the problem of incomplete path and improve the accuracy of cost calculation. Second, the matching cost volume is calculated with AD-SoftCensus measure that minimizes the impact of noise by changing the pattern of the census descriptor from binary to trinary. The robustness of the proposed algorithm is validated on Middlebury datasets, synthetic data, and real world data captured by a low-light camera in darkness. The results show that the proposed algorithm has better performance and higher matching rate among top-ranked algorithms on low signal-to-noise ratio data and high accuracy on the Middlebury benchmark datasets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.