Terahertz (THz) waves have great potential applications in communication, imaging, and spectroscopy fields. Effective THz modulators are highly desired to realize those functionalities. Wherein, as a kind of artificial composite material, THz metamaterials can achieve extraordinary responses to the electromagnetic wave through the geometric structure design. Nevertheless, normal metamaterials have no tunability once they have been designed and fabricated. To overcome this issue, active medias have been explored to enable the expected modulation of metamaterials under the external stimuli. Among them, phase transition materials are often used in dynamically tunable THz devices due to their intriguing properties. Particularly, vanadium dioxide (VO2) has attracted attention owing to the reversible physical properties and can exhibit insulator-to-metal transition (IMT) behavior at near room temperature. Here, we explore the strength of the resonance response and the change of spectral lineshape caused by the size variation in the metamaterial unit cell. On this basis, adding VO2 thin film can realize broadband modulation during the IMT process. Furthermore, by incorporating the VO2 patches in the gold microstructure can further achieve the dual modulation of amplitude and frequency simultaneously. The design of VO2 hybrid metamaterial can break the single function limitation of traditional metamaterial modulators, reduce material loss, and open up a new path for the development of multifunctional THz modulators.
Metamaterial induced transparency (MIT) has great potential in photonic device applications. Here, we design a metastructure with MIT effect generated by destructive interference of bright-dark-dark three modes. Therein, the cross resonator formed by the combination of the cut-wire resonator and the long vertical metal bar (LVMB) act as the bright mode, and two pairs of split ring resonators of different lengths are distributed around the cross resonator as two dark modes, realizing significant multi-band MIT effect. Furthermore, the embedded photosensitive Si island in the broken LVMB can be used to tune the effective length by changing the conductivity, thereby actively controlling the conversion from multi-band behaviors into triple MITs. Our results could achieve the dynamic multi-band switching, which has broad application prospects for optical information processing and communication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.