Lymph node biopsy is a primary means of staging breast cancer, yet standard pathological techniques are time-consuming and typically sample less than 1% of the total node volume. A low-cost fluorescence optical projection tomography (OPT) protocol is demonstrated for rapid imaging of whole lymph nodes in three dimensions. The relatively low scattering properties of lymph node tissue can be leveraged to significantly improve spatial resolution of lymph node OPT by employing angular restriction of photon detection. It is demonstrated through porcine lymph node metastases models that simple filtered-backprojection reconstruction is sufficient to detect and localize 200-μm-diameter metastases (the smallest clinically significant) in 1-cm-diameter lymph nodes.
The presence of lymph node metastases played as a critical prognostic factor in breast cancer treatment and guiding the future adjuvant treatment. The possibility of missed micrometastases by conventional pathology was estimated around 20-60% cases has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy rat and human lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Erbitux, an EGFR specific antibody was labeled with IRDye-700DX(LICOR) as targeted agent and IRDye-800CW was labeled to rat IgG as control agent. Lymph nodes were stained for 60 min, followed by 30 min rinsing, and the uptake and washout of fluorescence were recorded. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80- um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. Both imaging agents correlated well with each other(r=0.877) and the binding potential of targeted agent was found to be 0.08 ± 0.22 along the lymph node in the absence of binding. The results demonstrate this approach’s potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.
Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 ± 0.06 along the lymph node in the absence of binding. The results demonstrate this approach’s potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.