NASA’s Multi-Angle Imager for Aerosols (MAIA) mission, under development at the Jet Propulsion Laboratory, is designed to study the adverse health effects of different types of particulate air pollution. Planned for launch in late 2022 for a 3-year mission, the MAIA satellite instrument will focus on a selected set of metropolitan target areas, where air quality monitors and health data are available. Aerosol concentration and speciation are inferred from multi-angle measurements of backscattered sunlight in 14 spectral bands from 350-2200 nm, with bands near 442, 645 and 1040 nm measuring the degree (DoLP) and angle of linear polarization (AoLP) in addition to radiance. The pushbroom camera has a ~240-km cross-track field of view with a nadir resolution of ~200 m, and is mounted onto a biaxial gimbal to provide along-track view angles within ±60°, to extend the field of regard to ±48°, and to view the instrument’s onboard calibrator (OBC) and dark target. The OBC consists of a sunlit transmissive diffuser, followed by 12 polarizers at different orientations. MAIA’s polarimetry is implemented using miniature wiregrid polarizers on the focal plane array, and dual photoelastic modulators (PEMs) and achromatic quarter-wave plates to rapidly rotate the polarization. The resulting ~26-Hz intensity modulation encodes the linearly polarized and total radiance in each pixel, leaving the DoLP and AoLP insensitive to gain calibration. We report on the polarimetric calibration of the MAIA camera using a vacuum-compatible polarization state generator, consisting of a 1600W Xenon lamp, 12-inch integrating sphere, and rotating high-extinction polarizer. Mueller-matrix-based calibration coefficients for each detector pixel are derived from measurements at multiple polarizer angles, and are used to correct the measurements for instrumental polarization aberrations. Prior to flight, the calibrated MAIA camera is panned across the OBC to characterize its output, using uniform illumination with an irradiance similar to the Sun.
The Lunar Flashlight (LF) mission will send a CubeSat to lunar orbit via NASA’s Space Launch System (SLS) test flight. The LF spacecraft will carry a novel instrument to quantify and map water ice harbored in the permanently shadowed craters of the lunar South Pole. The LF instrument, an active multi-band reflectometer which employs four high power diode lasers in the 1-2 μm infrared band, will measure the reflectance of the lunar surface near water ice absorption peaks. We present the detailed instrument design and system engineering required to deploy this instrument within very demanding CubeSat resource allocations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.