MATISSE is the mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This second generation interferometry instrument will open new avenues in the exploration of our Universe. Mid-infrared interferometry with MATISSE will allow significant advances in various fundamental research fields: studies of disks around young stellar objects where planets form and evolve, surface structures and mass loss of stars in late evolutionary stages, and the environments of black holes in active galactic nuclei. MATISSE is a unique instrument. As a first breakthrough it will enlarge the spectral domain used by optical interferometry by offering the L & M bands in addition to the N band, opening a wide wavelength domain, ranging from 2.8 to 13 μm on angular scales of 3 mas (L/M band) / 10 mas (N band). As a second breakthrough, it will allow mid-infrared imaging – closure-phase aperture-synthesis imaging – with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. MATISSE will offer various ranges of spectral resolution between R~30 to ~5000. In this article, we present some of the main science objectives that have driven the instrument design. We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performance and discuss the project status. The operations concept will be detailed in a more specific future article, illustrating the observing templates operating the instrument, the data reduction and analysis, and the image reconstruction software.
MATISSE is a mid-infrared spectro-interferometer combining the beams of up to four Unit Telescopes or Auxiliary
Telescopes of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory.
MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. New characteristics present in
MATISSE will give access to the mapping and the distribution of the material, the gas and essentially the dust, in the
circumstellar environments by using the mid-infrared band coverage extended to L, M and N spectral bands. The four
beam combination of MATISSE provides an efficient uv-coverage: 6 visibility points are measured in one set and 4
closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime.
We give an overview of the instrument including the expected performances and a view of the Science Case. We present
how the instrument would be operated. The project involves the collaborations of several agencies and institutes: the
Observatoire de la Côte d’Azur of Nice and the INSU-CNRS in Paris, the Max Planck Institut für Astronomie of
Heidelberg; the University of Leiden and the NOVA-ASTRON Institute of Dwingeloo, the Max Planck Institut für
Radioastronomie of Bonn, the Institut für Theoretische Physik und Astrophysik of Kiel, the Vienna University and the
Konkoly Observatory.
MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very
Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study
demonstrates the enormous capability of a new generation mid-infrared beam combiner.
MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful
instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in
MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar
environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam
combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure
phase relations which can provide aperture synthesis images in the mid-infrared spectral regime.
A first generation of VLTI (Very Large Telescopes Interferometer) focal instruments, AMBER in the near-infrared and MIDI in the mid-infrared, has been already integrated and tested. New and important science results have been obtained. These instruments combine two (for MIDI) or three (for AMBER) beams coming from the eight telescopes installed at Cerro Paranal (four 8-meters and four 1.8-meters telescopes). In order to improve the capabilities of the interferometer and to engage a new scientific prospective, the second generation of VLTI instruments is currently under study. MATISSE belongs to this second generation. MATISSE objective is the image reconstruction. It will extend the astrophysical potential of the VLTI by overcoming the ambiguities existing in the interpretation of simple visibility measurements. It is a spectro-interferometer combining up to four beams with a large spectral coverage ranging from 3 to 25 μm (L, M, N and Q bands). Different spectral resolutions (between 30 and 1500) are foreseen. MATISSE will measure closure phase relations thus offering an efficient capability for image reconstruction. The concept of MATISSE is presented in this paper. The recombination mode of MATISSE is similar to the AMBER beam combination, but has been adapted to the constraints specific to the mid-infrared domain.
Our objective is the development of mid-infrared imaging at the VLTI. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI by increasing the number of recombined beams up to four. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M, N and Q spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage: 6 visibility points are measured in one set and 4 closure phase relations which can provide for the first time aperture synthesis images in the mid-infrared spectral regime. The mid-infrared spectral domain is very relevant for the study of the environment of various astrophysical sources. Our science case studies show the wide field of applications of MATISSE. They will be illustrated in the first part of this presentation through the perspective of imaging the circumstellar environments/discs of young stellar objects. The MATISSE characteristics will be given in a second part of the presentation.
This document shows the first results of the study of the environment of the S star T Sagittarii. Observational constraints are obtained through 10 μm long baseline interferometry with MIDI at the VLTI. Models of the dust envelope are simulated with a monte-carlo radiative transfer code.
We are studying an optical concept aiming at recombining four mid-infrared telescope beams, where interference fringes are sampled in the pupil plane. Such a principle is perfectly adapted for reconstructing images by aperture synthesis with teh VLTI. It could be used for building a new generation 10 μm instrument, but instead of doing a totally new instrument, we propose the design of an optical module that can supply the surrent MIDI-VLTI instrument with 4 beams. The combined use of this module together with the MIDI instrument is the project called APreS-MIDI. Such an instrument at the VLTI focus will have an unique and very strong astrophysical potential.
APreS-MIDI (APerture Synthesis in the MID-Infrared) instrument function is to recombine 4 telescope beams of the VLTI. Interference fringes are sampled in the pupil plane. The optical principle uses "image densification". It is perfectly adapted for reconstructing images by aperture synthesis at 10mm. This principle could be used for building a new generation 10mm instrument, but instead of making a totally new instrument, we propose the design of an optical module that can supply the current MIDI-VLTI instrument with 4 beams.
This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by observing in a combined pupil plane instead of an image plane. The point-source intensity distribution (PSID) of this interferometric "image" tends towards a psuedo Airy disc (similar to that of a giant monolithic telescope) for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field comparable to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions, circumstellar nebulosities or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.