Endometrial receptivity assessment based on the ultrasound image is a common and non-invasive way in clinician practice. Clinicians consider that the thickness of the endometrium is one of the most important assessment markers, which can be calculated with the endometrial region in ultrasound images. Suffering from low contrast of the boundaries in ultrasound images, it’s a challenge that makes accurate segmentation of endometrial for thickness calculation. An automated assessment framework with a multi-task learning segmentation network is proposed in this paper. The VGGbased U-net is trained with an auxiliary pattern classification task, the losses of different tasks are combined by weighted sum based on uncertainty in the training phase. Experiment shows that the network has a more accurate prediction than single-task learning and the framework does a better thickness calculation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.