Infrared images and visible images can obtain different image information in the same scene, especially in low-light scenes, infrared images can obtain image information that cannot be obtained by visible images. In order to obtain more useful information in the environment such as glimmer, infrared and visible images can be fused. In this paper, an image fusion method based on anisotropic diffusion and fast guided filter is proposed. Firstly, the source images are decomposed into base layers and detail layers by anisotropic dispersion. Secondly, the visible images and the infrared images are passed through the side window Gaussian filter to obtain the saliency map, and then the saliency map is passed through fast guided filter to obtain the fusion weight. Thirdly, the fused base layers and the fused detail layers are reconstructed to obtain the final fusion image. The application of the side window Gaussian filter helps to reduce the artifact information of the fused image. The results of the proposed algorithm are compared with similar algorithms. The fusion results reveal that the proposed method are outstanding in subjective evaluation and objective evaluation, and are better than other algorithms in standard deviation(STD) and entropy(EN), and other quality metrics are close to the optimal comparison algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.