In the fields of quantum computing and atomic clocks different technologies are competing to provide the best performances in terms of gate fidelity, coherence, and number of qubits. In this landscape, three-dimensional fabrication technologies bring an added value allowing more complex but precise electrode arrangements ideal for ion trapping.
In this research, we present two 3D monolithic Paul traps produced in fused silica with femtosecond selective laser etching techniques, combined with metal coating. Monolithic design ensures intrinsic alignment of the trap electrodes down to the micron, being all produced in a single fabrication step. Precise alignment, combined with three-dimensional electrode arrangement, creates a disruptive advantage for quantum devices’ architecture. We will showcase the performance benchmarks of our traps, including the heating rate and trap harmonicity, using laser-cooled chains of Calcium ions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.