Recent studies on dynamic temperature profiling and lithographic performance modeling of the post-exposure bake (PEB) process have demonstrated that the rate of heating and cooling may have an important influence on resist lithographic response. Measuring the transient surface temperature during the heating or cooling process with such accuracy can only be assured if the sensors embedded in or attached to the test wafer do not affect the temperature distribution in the bare wafer. In this paper we report on an experimental and analytical study to compare the transient response of embedded platinum resistance thermometer (PRT) sensors with surface-deposited, thin-film thermocouples (TFTC). The TFTCs on silicon wafers have been developed at NIST to measure wafer temperatures in other semiconductor thermal processes. Experiments are performed on a test bed built from a commercial, fab-qualified module with hot and chill plates using wafers that have been instrumented with calibrated type-E (NiCr/CuNi) TFTCs and commercial PRTs. Time constants were determined from an energy-balance analysis fitting the temperature-time derivative to the wafer temperature during the heating and cooling processes. The time constants for instrumented wafers ranged from 4.6 s to 5.1 s on heating for both the TFTC and PRT sensors, with an average difference less than 0.1 s between the TFTCs and PRTs and slightly greater differences on cooling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.