SOXS (SOn of X-Shooter) is a high-efficiency spectrograph with a mean Resolution-Slit product of about 3500 over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scientific arms (the UV-VIS Spectrograph, the NIR Spectrograph, and the Acquisition Camera) connected by the Common Path system to the NTT, and the Calibration Unit. During the last year, we performed the instrument AIV at the integration site in Europe. It is still ongoing. We present an overview of the flow for validation of the scientific and technical requirements, after integration of the sub-systems with some results as highlights. Further, we give an overview of the methodologies used for planning and managing the assembly of the sub-systems, their integration, and tests before the acceptance of the instrument in Europe (PAE). SOXS could be used as an example for the system engineering of an instrument of moderate complexity, with a large geographic spread of the team.
The Instrument Control Software of SOXS (Son Of X-Shooter), the forthcoming spectrograph for the ESO New Technology Telescope at the La Silla Observatory, has reached a mature state of development and is approaching the crucial Preliminary Acceptance in Europe phase. Now that all the subsystems have been integrated in the laboratories of the Padova Astronomical Observatory, the team operates for testing purposes with the whole instrument at both engineering and scientific level. These activities will make use of a set of software peculiarities that will be discussed in this contribution. In particular, we focus on the synoptic panel, the co-rotator system special device, on the Active Flexure Compensation system which controls two separate piezo tip-tilt devices.
We present the advancements in the development of the scheduler for the Son Of X-shooter (SOXS, 1,2) instrument at the ESO-NTT 3.58-m telescope in La Silla, Chile. SOXS is designed as a single-object spectroscopic facility and features a high-efficiency spectrograph with two arms covering the spectral range of 350-2000 nm and a mean resolving power of approximately R=4500. Its primary purpose is to conduct UV-visible and near-infrared follow-up observations of astrophysical transients, drawing from a broad pool of targets accessible through the streaming services of wide-field telescopes, both current and future, as well as high-energy satellites. The instrument is set to cater to various scientific objectives within the astrophysical community, each entailing specific requirements for observation planning, a challenge that the observing scheduler must address. A notable feature of SOXS is that it will operate at the European Southern Observatory (ESO) in La Silla, without the presence of astronomers on the mountain. This poses a unique challenge for the scheduling process, demanding a fully automated algorithm that is autonomously interacting with the appropriate databases and the La Silla Weather API, and is capable of presenting the operator not only with an ordered list of optimal targets (in terms of observing constraints) but also with optimal backups in the event of changing weather conditions. This requirement imposes the necessity for a scheduler with rapid-response capabilities without compromising the optimization process, ensuring the high quality of observations and best use of the time at the telescope. We thus developed a new highly available and scalable architecture, implementing API Restful applications like Docker Containers, API Gateway, and Python-based Flask frameworks. We provide an overview of the current state of the scheduler, which is now ready for the approaching on-site testing during Commissioning phase, along with insights into its web interface and preliminary performance tests.
In this paper, we introduce the scheduler for Radial Velocity (RV) measurements at the TNG telescope which is currently under development. The scheduler is a web-based application designed to optimize RV observations for GAPS community science projects. Additionally, it will be made available to all other follow-up RV programs that wish to benefit from it. We will detail the process of inputting, prioritizing, and selecting targets for observation with HARPS-N and GIANO-B at the TNG, while ensuring appropriate allocation, respecting the timing and constraint, among all the programs that use this scheduler to optimize their measurements. This fully automated software will be able to flank the observer with a night-by-night ordered list of optimal targets, as well as optimal backups in case observing conditions change, enabling users to adapt to rapid changes due to weather conditions that require a swift response, without compromising the optimization process, ensuring high-quality observations. We foresee to provide the scheduler with a web-based panel that interrogates the underlying application programming interfaces to load/reload/edit the calculated OBs list and export them for execution by the telescope operator.
SOXS (Son Of X-Shooter) will be the new medium-resolution (R 4500 for 1” slit), high-efficiency, wide-band spectrograph for the ESO NTT at La Silla Observatory, Chile. It will be dedicated to the follow-up of any kind of transient events, ensuring fast time, high efficiency, and availability. It consists of a central structure (common path) that supports two spectrographs optimized for the UV-Visible and a Near-Infrared range. Attached to the common path is the Acquisition and Guiding Camera system (AC), equipped with a filter wheel that can provide science-grade imaging and moderate high-speed photometry. The AC Unit was integrated and aligned during the summer months of 2022 and has since been mounted in the NTT’s telescope simulator. This work gives an update on the Acquisition Camera Unit status, describes the Image Quality Tests that were performed, and discusses the AC Optical Performance.
SOXS (Son Of X-Shooter) is the new ESO instrument that is going to be installed on the 3.58-m New Technology Telescope at the La Silla Observatory. SOXS is a single object spectrograph offering a wide simultaneous spectral coverage from U- to H-band. Although such an instrument may have potentially a large variety of applications, the consortium designed it with a clear science case: it is going to provide the spectroscopic counterparts to the ongoing and upcoming imaging surveys, becoming one of the main follow-up instruments in the Southern hemisphere for the classification and characterization of transients. The NTT+SOXS system is specialized to observe all transients and variable sources discovered by imaging surveys with a flexible schedule maintained by the consortium, based on a remote scheduler which will interface with the observatory software infrastructure. SOXS is realized timely to be highly synergic with transients discovery machines like the Vera C. Rubin Observatory. The instrument has been integrated and tested in Italy, collecting and assembling subsystems coming from all partners spread over six countries in three continents. The first preparatory activities in Chile have been completed at the telescope. This article gives an updated status of the project before the shipping of the instrument to Chile.
The SOXS spectrograph, designed for the ESO NTT telescope, operates in both the optical (UV-VIS: 350-850 nm) and NIR (800-2000 nm) bands. This article provides an overview of the final tests conducted on the UV-VIS camera system using a telescope simulator. It details the system’s performance evaluation, including key metrics such as gain, readout noise, and linearity, and highlights the advancements made in the upgraded acquisition system. The testing process, conducted in the Padua laboratory, involved comprehensive simulations of the telescope environment to ensure the results closely resemble those expected at the ESO-NTT telescope. The successful completion of these tests confirms the system’s readiness for deployment to Chile, where it will be installed on the NTT telescope, marking a significant milestone in the SOXS project.
SOXS (Son Of X-Shooter) is the new single object spectrograph for the ESO New Technology Telescope (NTT) at the La Silla Observatory, able to cover simultaneously both the UV-VIS and NIR bands (350-2000 nm). The instrument is currently in the integration and test phase, approaching the Preliminary Acceptance in Europe (PAE) before shipment to Chile for commissioning. After the assembly and preliminary test of the control electronics at INAF - Astronomical Observatory of Capodimonte (Napoli), the two main control cabinets of SOXS are now hosted in Padova, connected to the real hardware. This contribution describes the final electronic cabinets layout, the control strategy and the different integration phases, waiting for the Preliminary Acceptance in Europe and the installation of the instrument in Chile.
We report the implemented architecture for monitoring the health and the quality of the Son Of X-Shooter (SOXS) spectrograph for the New Technology Telescope in La Silla at the European Southern Observatory. Briefly, we report on the innovative no-SQL database approach used for storing time-series data that best suits for automatically triggering alarm, and report high-quality graphs on the dashboard to be used by the operation support team. The system is designed to constantly and actively monitor the Key Performance Indicators (KPI) metrics, as much automatically as possible, reducing the overhead on the support and operation teams. Moreover, we will also detail about the interface designed to inject quality checks metrics from the automated SOXS Pipeline (Young et al. 2022).
We present development progress of the scheduler for the Son Of X-Shooter (SOXS) instrument at the ESO-NTT 3.58-m telescope. SOXS will be a single object spectroscopic facility, consisting of a two-arms high-efficiency spectrograph covering the spectral range 350-2000 nm with a mean resolving power R≈4500. SOXS will be uniquely dedicated to the UV-visible and near infrared follow up of astrophysical transients, with a very wide pool of targets available from the streaming services of wide-field telescopes, current and future. This instrument will serve a variety of scientific scopes in the astrophysical community, with each scope eliciting its specific requirements for observation planning, that the observing scheduler has to meet. Due to directions from the European Southern Observatory (ESO), the instrument will be operated only by La Silla staff, with no astronomer present on the mountain. This implies a new challenge for the scheduling process, requiring a fully automated algorithm that should be able to present the operator not only with and ordered list of optimal targets, but also with optimal back-ups, should anything in the observing conditions change. This imposes a fast-response capability to the scheduler, without compromising the optimization process, that ensures good quality of the observations. In this paper we present the current state of the scheduler, that is now almost complete, and of its web interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.