Quantitative remote sensing and GIS technologies are providing opportunities for Bioproduction and natural resources monitoring. Some gross primary production (GPP) and net primary production (NPP) models take ecological structure parameters (Land cover, LAI, and biomass) retrieved from remote sensing data as inputs to get information on ecosystem exchange on a global scale. Our recent research focuses on key problems in retrieving variable parameters of land surfaces from remote sensing observations, such as, the observing scale is different from the measuring scale of ground truth, the parameters which application requires may not be the same as the parameters of current physical models, the uncertainty of retrieved parameters by model inversion. In this paper, we present our new approaches on scaling effect modeling, physical model inversion by using prior knowledge, field experiments and setup of the spectrum knowledge base of typical objects, and the applications of the quantitative remote sensing research achievements in ecosystem assessment and monitoring, such as, in GPP and NPP of forest, energy exchange of crop field and grassland, water cycle, climate change. Some new modeling ideas and parameters retrieving results will be shown in this paper, as well as some remote sensing application samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.