The large apertures of the upcoming generation of Giant Segmented Mirror Telescopes will enable unprecedented angular resolutions that scale as ∝λ/D and higher sensitivities that scale as D4 for point sources corrected by adaptive optics (AO). However, all will have pupil segmentation caused by mechanical struts holding up the secondary mirror (European Extremely Large Telescope and Thirty Meter Telescope) or intrinsically, by design, as in the Giant Magellan Telescope (GMT). These gaps will be separated by more than a typical atmospheric coherence length (Fried Parameter). The pupil fragmentation at scales larger than the typical atmospheric coherence length, combined with wavefront sensors with weak or ambiguous sensitivity to differential piston, can introduce differential piston areas of the wavefront known as “petal modes.” Commonly used wavefront sensors, such as a pyramid wavefront sensor, also struggle with phase wrapping caused by >λ/2 differential piston wavefront error (WFE). We have developed the holographic dispersed fringe sensor (HDFS), a single pupil-plane optic that employs holography to interfere the dispersed light from each segment onto different spatial locations in the focal plane to sense and correct differential piston between the segments. This allows for a very high and linear dynamic piston sensing range of approximately ±10 μm. We have begun the initial attempts at phasing a segmented pupil utilizing the HDFS on the High Contrast Adaptive optics phasing Testbed (HCAT) and the Extreme Magellan Adaptive Optics instrument (MagAO-X) at the University of Arizona. In addition, we have demonstrated the use of the HDFS as a differential piston sensor on-sky for the first time. We were able to phase each segment to within ±λ/11.3 residual piston WFE (at λ=800 nm) of a reference segment and achieved ∼50 nm RMS residual piston WFE across the aperture in poor seeing conditions.
MagAO-X is the extreme coronagraphic adaptive optics (AO) instrument for the 6.5-meter Magellan Clay telescope and is currently undergoing a comprehensive batch of upgrades. One innovation that the instrument features is a deformable mirror (DM) dedicated for non-common path aberration correction (NCPC) within the coronagraph arm. We recently upgraded the 97 actuator NCPC DM with a 1000 actuator Boston Micromachines Kilo-DM which serves to (1) correct non-common path aberrations which hamper performance at small inner-working angles, (2) facilitate focal-plane wavefront control algorithms (e.g., electric field conjugation) and (3) enable 10kHz correction speeds (up from 2kHz) to assist post-AO, real-time low-order wavefront control. We present details on the characterization and installation of this new DM on MagAO-X as part of our efforts to improve deep contrast performance for imaging circumstellar objects in reflected light. Pre-installation procedures included use of a Twyman-Green interferometer to build an interaction matrix for commanding the DM surface, in closed-loop, to a flat state for seamless integration into the instrument. With this new NCPC DM now installed, we report on-sky results from the MagAO-X observing run in March to May 2024 for the Focus Diversity Phase Retrieval and implicit Electric Field Conjugation algorithms for quasistatic speckle removal and in-situ Strehl ratio optimization, respectively.
All high-contrast imaging instruments are plagued by non-common path aberrations (NCPA). MagAO-X has a unique second-stage Adaptive Optics (AO) system that contains a dedicated deformable mirror (DM) that is not seen by the main AO wavefront sensor for NCPA compensation. Our second stage AO system decouples the focal plane wavefront control from the main AO loop that is driven by a pyramid wavefront sensor. This Non-Common Path Aberration Correction DM (ncpcDM) has been recently upgraded from an ALPAO-97 to a Boston Micromachine Kilo-DM. The large increase in the number of actuators on the ncpcDM enables high-order focal plane wavefront control algorithms such as implicit Electric Field Conjugation (iEFC). We developed iEFC on MagAO-X to create a data-driven approach to coronagraphic dark hole digging. Our preliminary results indicate that iEFC together with the second-stage AO system can improve the raw contrast of MagAO-X by one to two orders of magnitude with an even larger gain expected after post-processing. We will review the focal-plane wavefront sensing and control strategies of MagAO-X and present the first on-sky results of iEFC with the second-stage AO system.
The next generation of extreme adaptive optics (AO) must be calibrated exceptionally well to achieve the desired contrast for ground-based direct imaging exoplanet targets. Current wavefront sensing and control system responses deviate from lab calibration throughout the night due to non linearities in the wavefront sensor (WFS) and signal loss. One cause of these changes is the optical gain (OG) effect, which shows that the difference between actual and reconstructed wavefronts is sensitive to residual wavefront errors from partially corrected turbulence. This work details on-sky measurement of optical gain on MagAO-X, an extreme AO system on the Magellan Clay 6.5m. We ultimately plan on using a method of high-temporal frequency probes on our deformable mirror to track optical gain on the Pyramid WFS. The high-temporal frequency probes, used to create PSF copies at 10-22 λ/D, are already routinely used by our system for coronagraph centering and post-observation calibration. This method is supported by the OG measurements from the modal response, measured simultaneously by sequenced pokes of each mode. When tracked with DIMM measurements, optical gain calibrations show a clear dependence on Strehl Ratio, and this relationship is discussed. This more accurate method of calibration is a crucial next step in enabling higher fidelity correction and post processing techniques for direct imaging ground based systems.
High-contrast imaging data analysis depends on removing residual starlight from the host star to reveal planets and disks. Most observers do this with principal components analysis (i.e. KLIP) using modes computed from the science images themselves. These modes may not be orthogonal to planet and disk signals, leading to over-subtraction. The wavefront sensor data recorded during the observation provide an independent signal with which to predict the instrument point-spread function (PSF). MagAO-X is an extreme adaptive optics (ExAO) system for the 6.5-meter Magellan Clay telescope and a technology pathfinder for ExAO with GMagAO-X on the upcoming Giant Magellan Telescope. MagAO-X is designed to save all sensor information, including kHz-speed wavefront measurements. Our software and compressed data formats were designed to record the millions of training samples required for machine learning with high throughput. The large volume of image and sensor data lets us learn a PSF model incorporating all the information available. This allows us to probe smaller star-planet separations at greater sensitivities, which will be needed for rocky planet imaging.
The high contrast and spatial resolution requirements for directly imaging exoplanets requires effective coordination of wavefront control, coronagraphy, observation techniques, and post-processing algorithms. However, even with this suite of tools, identifying and retrieving exoplanet signals embedded in resolved scattered light regions can be extremely challenging due to the increased noise from scattered light off the circumstellar disk and the potential misinterpretation of the true nature of the detected signal. This issue pertains not only to imaging terrestrial planets in habitable zones within zodiacal and exozodiacal emission but also to young planets embedded in circumstellar, transitional, and debris disks. This is particularly true for Hα detection of exoplanets in transitional disks. This work delves into recent Hα observations of three transitional disks systems with MagAO-X, an extreme adaptive optics system for the 6.5-meter Magellan Clay telescope. We employed angular differential imaging (ADI) and simultaneous spectral differential imaging (SSDI) in combination with KLIP, a PCA algorithm in post-processing, for optimal starlight suppression and quasi-static noise removal. We discuss the challenges in protoplanet identification with MagAO-X in environments rich with scattered and reflected light from disk structures and explore a potential solution for removing noise contributions from real astronomical objects with current observation and post-processing techniques.
MagAO-X is the coronagraphic extreme adaptive optics system for the 6.5m Magellan Clay Telescope. We report the results of commissioning the first phase of MagAO-X. Components now available for routine observations include: the >2kHz high-order control loop consisting of a 97 actuator woofer deformable mirror (DM), a 2040 actuator tweeter DM, and a modulated pyramid wavefront sensor (WFS); classical Lyot coronagraphs with integrated low-order (LO) WFS and control using a third 97-actuator non-common path correcting (NCPC) DM; broad band imaging in g, r, i, and z filters with two EMCCDs; simultaneous differential imaging in Hα; and integral field spectroscopy with the VIS-X module. Early science results include the discovery of an Hα jet, images of accreting protoplanets at Hα, images of young extrasolar giant planets in the optical, discovery of new white dwarf companions, resolved images of evolved stars, and high-contrast images of circumstellar disks in scattered light in g-band (500nm). We have commenced an upgrade program, called “Phase II”, to enable high-contrast observations at the smallest inner working angles possible. These upgrades include a new 952 actuator NCPC DM to enable coronagraphic wavefront control; phase induced amplitude apodization coronagraphs; new fast cameras for LOWFS and Lyot-LOWFS; and real-time computer upgrades. We will report the status of these upgrades and results of first on-sky testing in March-May 2024.
We present the preliminary design of GMagAO-X, the first-light high-contrast imager planned for the Giant Magellan Telescope. GMagAO-X will realize the revolutionary increase in spatial resolution and sensitivity provided by the 25 m GMT. It will enable, for the first time, the spectroscopic characterization of nearby potentially habitable terrestrial exoplanets orbiting late-type stars. Additional science cases include: reflected light characterization of mature giant planets; measurement of young extrasolar giant planet variability; characterization of circumstellar disks at unprecedented spatial resolution; characterization of benchmark stellar atmospheres at high spectral resolution; and mapping of resolved objects such as giant stars and asteroids. These, and many more, science cases will be enabled by a 21,000 actuator extreme adaptive optics system, a coronagraphic wavefront control system, and a suite of imagers and spectrographs. We will review the science-driven performance requirements for GMagAO-X, which include achieving a Strehl ratio of 70% at 800 nm on 8th mag and brighter stars, and post-processed characterization at astrophysical flux-ratios of 1e-7 at 4 lambda/D (26 mas at 800 nm) separation. We will provide an overview of the resulting mechanical, optical, and software designs optimized to deliver this performance. We will also discuss the interfaces to the GMT itself, and the concept of operations. We will present an overview of our end-to-end performance modeling and simulations, including the control of segment phasing, as well as an overview of prototype lab demonstrations. Finally, we will review the results of Preliminary Design Review held in February, 2024.
The upcoming Extremely Large Telescopes have the angular resolution and light collecting area that is necessary to observe biosignatures in the atmospheres of Earth-like planets. High-contrast imaging instruments will play a large role in this because observing planets directly overcomes many of the observational limitations of other exoplanet detection techniques. The influence of the bright star can be significantly reduced by spatially resolving the dim planet, allowing characterization of the planet and its atmosphere. However, the required wavefront sensing, and control (WFS&C) technologies have yet to be proven on-sky. The Magellan Adaptive Optics eXtreme (MagAO-X) instrument is a new visible to near-infrared high-contrast imaging system that operates as a testbed for the development and testing of WFS&C techniques.
We present a status update for MagAO-X, a 2000 actuator, 3.6 kHz adaptive optics and coronagraph system for the Magellan Clay 6.5 m telescope. MagAO-X is optimized for high contrast imaging at visible wavelengths. Our primary science goals are detection and characterization of Solar System-like exoplanets, ranging from very young, still-accreting planets detected at H-alpha, to older temperate planets which will be characterized using reflected starlight. First light was in Dec, 2019, but subsequent commissioning runs were canceled due to COVID19. In the interim, MagAO-X has served as a lab testbed. Highlights include implementation of several focal plane and low-order wavefront sensing algorithms, development of a new predictive control algorithm, and the addition of an IFU module. MagAO-X also serves as the AO system for the Giant Magellan Telescope High Contrast Adaptive Optics Testbed. We will provide an overview of these projects, and report the results of our commissioning and science run in April, 2022. Finally, we will present the status of a comprehensive upgrade to MagAO-X to enable extreme-contrast characterization of exoplanets in reflected light. These upgrades include a new post-AO 1000-actuator deformable mirror inside the coronagraph, latest generation sCMOS detectors for wavefront sensing, optimized PIAACMC coronagraphs, and computing system upgrades. When these Phase II upgrades are complete we plan to conduct a survey of nearby exoplanets in reflected light.
The search for exoplanets is pushing adaptive optics systems on ground-based telescopes to their limits. A major limitation is the temporal error of the adaptive optics systems. The temporal error can be reduced with predictive control. We use a linear data-driven integral predictive controller that learns while running in closed-loop. This is a new algorithm that has recently been developed. The controller is tested in the lab with MagAO-X under various conditions, where we gain several orders of magnitude in contrast compared to a classic integrator. With the current schedule, the new data-driven predictive controller will be tested on-sky in spring 2021. We will present both the lab results and the on-sky results, and we will show how this controller can be implemented with current hardware for future extremely large telescopes.
MagAO-X system is a new adaptive optics for the Magellan Clay 6.5m telescope. MagAO-X has been designed to provide extreme adaptive optics (ExAO) performance in the visible. VIS-X is an integral-field spectrograph specifically designed for MagAO-X, and it will cover the optical spectral range (450 – 900 nm) at high-spectral (R=15.000) and high-spatial resolution (7 mas spaxels) over a 0.525 arsecond field of view. VIS-X will be used to observe accreting protoplanets such as PDS70 b & c. End-to-end simulations show that the combination of MagAO-X with VIS-X is 100 times more sensitive to accreting protoplanets than any other instrument to date. VIS-X can resolve the planetary accretion lines, and therefore constrain the accretion process. The instrument is scheduled to have its first light in Fall 2021. We will show the lab measurements to characterize the spectrograph and its post-processing performance.
MagAO-X is a new “extreme” adaptive optics system for the Magellan Clay 6.5 m telescope which began commissioning in December, 2019. MagAO-X is based around a 2040 actuator deformable mirror, controlled by a pyramid wavefront sensor operating at up to 3.6 kHz. When fully optimized, MagAO-X will deliver high Strehls (< 70%), high resolution (19 mas), and high contrast (< 1 × 10−4) at Hα (656 nm). We present a brief review of the instrument design and operations, and then report on the results of the first-light run.
Our past GAPplanetS survey over the last 5 years with the MagAO visible AO system discovered the first examples of accreting protoplanets (by direct observation of H-alpha emission). Examples include LkCa15 b (Sallum et al. 2015) and PDS70 b (Wagner et al. 2018). In this paper we review the science performance of the newly (Dec. 2019) commissioned MagAO-X extreme AO system. In particular, we use the vAPP coronagraphic contrasts measured during MagAO-X first light. We use the Massive Accreting Gap (MAG) protoplanet model of Close 2020 to predict the H-alpha contrasts of 19 of the best transitional disk systems (ages 1-5 Myr) for the direct detection of H-alpha from accretion of hydrogen onto these protoplanets. The MAG protoplanet model applied to the observed first light MagAO-X contrasts predict a maximum yield of 46±7 planets from 19 stars (42 of these planets would be new discoveries). This suggests that there is a large, yet, unexplored reservoir of protoplanets that can be discovered with an extreme AO coronagraphic survey of 19 of the best transitional disk systems. Based on our first light contrasts we predict a healthy yield of protoplanets from our MaxProtoPlanetS survey of 19 transitional disks with MagAO-X.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.