Quantum technologies harness nonclassical features of particles, here, photons, to develop novel, efficient, and precise devices for information processing applications. Superposition, entanglement, as well as the coherent manipulation of quantum states are at the heart of the second quantum revolution (quantum 2.0) which targets the development of secure cryptographic systems, complex computation protocols, and more. Emerging quantum architectures rely on the realistic implementation of photonic schemes which are scalable, resource-efficient, and compatible with CMOS technologies as well as fiber networks. This work demonstrates current schemes utilized for time-/frequency-bin entanglement generation and processing by leveraging existing telecommunications and integrated photonics infrastructures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.