In this paper, we present FlyBy CNN, a novel deep learning based approach for 3D shape segmentation. FlyBy-CNN consists of sampling the surface of the 3D object from different view points and extracting surface featuressuch as the normal vectors. The generated 2D images are then analyzed via 2D convolutional neural networkssuch as RUNETs. We test our framework in a dental application for segmentation of intra-oral surfaces. TheRUNET is trained for the segmentation task using image pairs of surface features and image labels as groundtruth. The resulting labels from each segmented image are put back into the surface thanks to our samplingapproach that generates 1-1 correspondence of image pixels and triangles in the surface model. The segmentationtask achieved an accuracy of 0.9
KEYWORDS: Shape analysis, Databases, Data storage, Visualization, Data modeling, Data centers, Statistical analysis, Dentistry, 3D image processing, Data analysis
This study presents a web-system repository: Data Storage for Computation and Integration (DSCI) for Osteoarthritis of the temporomandibular joint (TMJ OA). This environment aims to maintain and allow contributions to the database from multi-clinical centers and compute novel statistics for disease classification. For this purpose, imaging datasets stored in the DSCI consisted of three-dimensional (3D) surface meshes of condyles from CBCT, clinical markers and biological markers in healthy and TMJ OA subjects. A clusterpost package was included in the web platform to be able to execute the jobs in remote computing grids. The DSCI application allowed runs of statistical packages, such as the Multivariate Functional Shape Data Analysis to compute global correlations between covariates and the morphological variability, as well as local p-values in the 3D condylar morphology. In conclusion, the DSCI allows interactive advanced statistical tools for non-statistical experts.
We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.