We report on the progress of our efforts to apply silicon nitride photonic integrated circuits (PIC) to the miniaturization of optical coherence tomography (OCT) with the goal of facilitating its widespread use in ophthalmology at the point of care. In particular, we highlight the design and optical characterization of photonic building blocks allowing the realization of a silicon nitride PIC-based multi-channel swept-source OCT system in the 1060 nm wavelength region. Apart from waveguide structures, these building blocks include 3D-printed microlenses on the PIC end facets for efficient light coupling to and from the PIC.
We present a miniaturized optical coherence tomography (OCT) setup based on photonic integrated circuits (PIC) for the 850 nm range. We designed a 512-channel arrayed waveguide grating (AWG) on a PIC for spectral domain OCT (SD-OCT) that is co-integrated with PIN-photodiodes and analog-to-digital-converters on one single chip. This image sensor is combined with all the necessary electronics to act as a camera. It is integrated into a fiber-based OCT system, achieving a sensitivity of >80dB and various samples are imaged. This optoelectronic system will allow building small and cost-effective OCT systems to monitor retinal diseases.
We present an active pixel for a spectral domain optical coherence tomography sensor on a chip, where optical components are realized in a photonic layer and monolithically integrated with the electronics, whereby light is brought to the pixels using waveguides. The core of the pixel is an amplifier with capacitive feedback (so-called capacitive transimpedance amplifier), apart from that, a correlated double sampling circuit is implemented within the pixel. The proposed active pixel is based on a PIN photodiode and fabricated in 0.35-μm high-voltage CMOS technology. We use three different epitaxial starting material thicknesses (20, 30, and 40 μm) in order to find the device with best performance. The pixel is optimized for high efficiency in a spectral range between 800 and 900 nm. We explain advantages in the spectral responsivity and crosstalk of this pixel over conventional p / n photodiode-based pixels in standard CMOS processes and over the pinned photodiode-based pixel. We also present measured pixel parameters and give comparison with prior work.
In this paper we present the size reduction of a 160-channel, 50-GHz Si3N4 based AWG-spectrometer. The spectrometer was designed for TM-polarized light with a central wavelength of 850 nm applying our proprietary “AWG-Parameters” tool. For the simulations of AWG layout, the PHASAR photonics tool from Optiwave was used. The simulated results show satisfying optical properties of the designed AWG-spectrometer. However, such high-channel count AWG features large size. To solve this problem we designed a special taper enabling the reduction of AWG structure by about 15%, while keeping the same optical properties. The technological verification of both AWG designs is also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.