In world-leading semiconductor manufacturing, the device feature size keeps on reducing and with it processes become more challenging in the next technology node. The On Product Overlay (OPO) budget is therefore required to reduce further. Alignment is one of the key factors in reducing overlay wafer to wafer (W2W) variations. To save product area and reduce scribe line width, small alignment mark is evaluated to achieve the similar results as reference mark and to optimize the OPO performance. In this work, we will show the experimental results of small alignment mark and investigate the on product overlay performance by simulation.
In world-leading semiconductor manufacturing, the device feature size keeps on reducing and with it processes become more challenging in the next technology node. The on-product overlay budget is therefore required to reduce further. Alignment is one of the key factors in reducing overlay wafer-to-wafer variation. Due to the complexity, a holistic methodology is used to combine various alignment solutions to achieve the optimal on-product overlay performance. In this paper, we evaluated the holistic method by simulation and experiment for DUV layers. We illustrate the expected on-product overlay improvement.
To support the manufacturing of DRAM semiconductors for next and future nodes, there is a constant need to reduce the overlay fingerprints. In this paper we evaluate algorithms which are capable of decoupling wafer deformation from mark deformation and extrapolation effects. The algorithms enable lithography tools to use only the wafer deformation component in the alignment feedforward correction. Therefore improving the (wafer to wafer) overlay. First results will be shared showing improvement of wafer to wafer variation in high-volume manufacturing environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.