This paper documents the application of a new image processing algorithm, two-dimensional non-linear additive decomposition (NLAD), which is used to identify regions in a digital image whose gray-scale (or color) intensity is different than the surrounding background. Standard image segmentation algorithms exist that allow users to segment images based on gray-scale intensity and/or shape. However, these processing techniques do not adequately account for the image noise and lighting variation that typically occurs across an image. NLAD is designed to separate image noise and background from artifacts thereby providing the ability to consistently evaluate images. The decomposition techniques used in this algorithm are based on the concepts of mathematical morphology. NLAD emulates the human capability of visually separating an image into different levels of resolution components, denoted as 'coarse', 'fine', and 'intermediate.' Very little resolution information overlaps any two of the component images. This method can easily determine and/or remove trends and noise from an image. NLAD has several additional advantages over conventional image processing algorithms, including no need for a transformation from one space to another, such as is done with Fourier transforms, and since only finite summations are required, the calculational effort is neither extensive nor complicated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.