Single ≤1 kJ pulses from a high-power laser are focused into molecular gases to create large laser sparks. This provides a unique way to mimic the chemical effects of high-energy-density events in planetary atmospheres (cometary impact, lightning) matching the natural energy-density, its spatio-temporal evolution and plasma-volume scaling of such events in a fully-controlled laboratory environment. Some chemical reactions initiated by laser-induced dielectric breakdown (LIDB) in both pure molecular gases and mixtures related to the chemical evolution of the Earth's early atmosphere were studied. Most of the experiments were carried out in a static gas cell. However, an initial series of experiments was also performed with a gas-puff target placed within a vacuum interaction chamber. Under these dynamic conditions the hot core of a laser spark can be directly investigated.
We give an overview of recent advances in development and applications of deeply saturated Ne like zinc soft X-ray laser at PALS, providing strongly saturated emission at 21.2 nm. Population inversion is produced in the regime of long scale-length density plasma, which is achieved by a very large time separation between the prepulse (<10 J) and the main pump pulse (~500 J), of up to 50 ns. This pumping regime is unique in the context of current x-ray laser research. An extremely bright and narrowly collimated double-pass x-ray laser beam is obtained, providing ~10 mJ pulses and ~100 MW of peak power, which is the most powerful soft X-ray laser yet demonstrated. The programme of applications recently undertaken includes precision measurements of the soft X-ray opacity of laser irradiated metals relevant to stellar astrophysics, soft X-ray interferometric probing of optical materials for laser damage studies, soft X-ray material ablation relevant to microfabrication technologies, and pilot radiobiology studies of DNA damage in the soft X-ray region. A concomitant topic is focusing the x-ray laser beam down to a narrow spot, with the final goal of achieving ~1013 Wcm-2.
The multi-mJ, 21-nm soft-x-ray laser at the PALS facility was focused on the surface of amorphous carbon (a-C) coating, developed for heavily loaded XUV/x-ray optical elements. AFM (Atomic Force Microscopy) images show 3-micrometer expansion of the irradiated material. Raman spectra, measured with an Ar+ laser microbeam in both irradiated and unirradiated areas, confirm a high degree of graphitization in the irradiated layer. In addition to this highfluence (~ 1 J/cm2), single-shot experiment, it was necessary to carry out an experiment to investigate consequences of prolonged XUV irradiation at relatively low fluence. High-order harmonic (HH) beam generated at the LUCA facility in CEA/Saclay Research Center was used as a source of short-wavelength radiation delivering high-energy photons on the surface at a low single-shot fluence but with high-average power. a-C irradiated at a low fluence, i.e., < 0.1 mJ/cm2 by many HH shots exhibits an expansion for several nanometers. Although it is less dramatic change of surface morphology than that due to single-hot x-ray-laser exposure even the observed nanometer-sized changes caused by the HH beam on a-C surface could influence reflectivity of a grazing incidence optical element. These results seem to be important for estimating damages to the surfaces of highly irradiated optical elements developed for guiding and focusing the ultraintense XUV/x-ray beams provided by new generation sources (i.e., VUV FEL and XFEL in Hamburg; LCLS in Stanford) because, up to now, only melting and vaporization, but not graphitization, have been taken into account.
For conventional wavelength (UV-vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (<100 nm) lasers emitting pulses with durations ranging from ~10 fs to ~1 ns have recently been put into routine operation. This makes it possible to investigate how ablation characteristics depend on pulse duration in the XUV spectral region. Four sources of intense short-wavelength radiation available in the authors' laboratories, including XUV and soft x-ray lasers, are used for the ablation experiments. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for nanosecond pulses with those measured for shorter pulses, we can study the influence of pulse duration on XUV ablation efficiency. The results of the experiments also show that the ablation rate increases while the wavelength decreases from the XUV spectral region toward x-rays, mainly due to increase of attenuation lengths at short wavelengths.
Radiation from the Ne-like Zn soft x-ray laser (λ=21.2 nm, τ< 100 ps) driven by PALS (Prague Asterix Laser System) was successfully focused with a spherical Si/Mo multilayer-coated mirror to ablate poly(methyl methacrylate), monocrystalline silicon, and amorphous carbon. To our knowledge, this was the first observation of material ablation with a laser working in the soft x-ray region, i.e. λ<30 nm.
Experiments on direct photo-etching of organic polymers induced by high-intensity nanosecond pulses of soft X-ray radiation from a laser plasma X-ray source based on a gas puff target are presented. X-rays in the wavelength range from about 1 nm to 8 nm were produced by irradiation of the xenon/helium double-stream gas puff target with laser pulses from the Prague Asterix Laser System (PALS). The resulting X-ray pulses were used to irradiate samples from organic polymers and form microstructures. The results show relatively high efficiency of X-ray direct photo-etching that could be useful for micromachining of organic polymers.
For conventional wavelength (UV-Vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (l < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes it possible to investigate how the ablation characteristics depend on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser (Colorado State University, Fort Collins), focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with those measured for ultrashort pulses, we can study the influence of pulse duration on XUV ablation efficiency. Ablation efficiencies measured with short pulses at various wavelengths (i.e. 86/46.9/21.2 nm from the above-mentioned lasers and ~ 1 nm from the double stream gas-puff Xe plasma source driven by PALS) show that the wavelength influences the etch rate mainly through the different attenuation lengths.
Ablation thresholds, etch rates, and quality of ablated structures often differ dramatically if a conventional, UV-Vis-IR laser delivers radiation energy onto a material surface in a short (nanosecond) or ultra-short (picosecond/femtosecond) pulses. Various short-wavelength (λ < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes possible to investigate how the ablation characteristics depends on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser, focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with an ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiment the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with the measured ones for ultrashort pulses we may study the influence of pulse duration on the XUV ablation efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.