In this paper, a simple structure, low-cost all-fiber laser self-mixing vibration sensing system is designed for monitoring the health status of thin-walled structures which are workpieces in machining, for resolving the interferential problems with the existing vibration measurement system, caused by the cruel environment such as electromagnetic interference, humidity. In this system, a distributed feedback all-fiber laser with ultra-short cavity length is used as the light source, and the real-time monitoring of vibration state of plate under different positions of forced vibration sources is observed. The experimental results show that when the forced vibration source located at the free end or the restricted end of the plate, the measurable self-mixing signals (signal-to-noise ratio up to 30dB) is available at any position. Moreover, it will help us to analysis the specification and the physical mechanism of the forced vibration, by studying this all-fiber laser self-mixing vibration sensor in detail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.