Photodetectors harnessing hot carrier generation on surface plasmon resonant nanoantennas are a promising avenue to achieving sub-bandgap imaging at room temperature. However, efficient extraction of plasmonic hot carriers under low-energy infrared (IR) excitation predicates careful design of Schottky interfaces. This work reports on the simulation-guided fabrication of Au (i) planar diodes and (ii) embedded IR nanoantennas interfaced with both n-/p-type Si and GaAs semiconductors in order to elucidate the impact of their electronic properties on photocurrent generation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.