Semiconductor device developments are typically guided by simulations – what is the best epitaxial design, or how should field plates or edge terminations be designed. To assess how a particular device reflects what has been designed, comparing IV curves measured and simulated is typical, but for example different implantation or doping levels can lead to the same too low breakdown voltage, and there is then little guidance for example how to mitigate such a problem to optimize/enhance breakdown voltage. We illustrate the latest capability of a technique we developed, based on electricfield- induced optical second-harmonic generation (EFISHG), on vertical GaN-on-GaN pn junction examples, to directly access with submicron spatial resolution electric strength in a device, to aid improving device design and their implementation, and reducing product development cycles.
The application space for GaN devices is expanding. During our study of Vertical GaN device technology for power electronics, one of the phenomenal advancements was achieving a high-voltage, robust avalanche in p-n diodes. A high-quality p-n junction, although superficially simple, can be fundamentally limited in offering a uniform avalanche. Uniformity of avalanche is a critical parameter that is often overlooked during device designs and other metrics.
The demand of higher power density from power converters has increased since its very origin and increased by 3 orders of magnitude over the last 40 years. This trend is not just seen in power conversion, but also in Radar communication where RF power density is the metric. So, although very different in applications, both power converter and RF power amplifiers are relying on a roadmap decorated with WBG and Ultra-WBG materials.
Beyond GaN and SiC, Ga2O3, Diamond and AlN have been explored for some time in academia, government labs, and industry. All these materials come with their own merits and demerits; doping efficiency being of utmost relevance for their application as a semiconductor device. Diamond, with a bandgap of 5.47eV is definitely a very attractive material for its large critical electric field (3x more than SiC), high thermal conductivity (6x more than SiC) and other carrier transport properties.
Gallium oxide (Ga2O3) is a promising wide bandgap semiconductor for power electronic applications. Investigation into the conduction mechanism of Ga2O3 Schottky diodes is important for improving the device performance. In this study, the forward-biased temperature dependent current-voltage (I-V-T) characteristics of Ni/(-201) β-Ga2O3 Schottky diodes have been investigated in the temperature range of 298-473 K. The apparent barrier height (ϕ_ap) increased while the ideality factor (n) decreased with the increase in temperature. Such a temperature dependent behavior of ϕ_ap and n was explained by the inhomogeneity of ϕ_ap, which obeyed Gaussian distribution with mean barrier height of 1.8 eV and standard deviation of 201 mV. Subsequently, zero-bias barrier height (¯ϕ_B0) and Richardson constant (A*) were obtained from the slope and intercept of the modified Richardson plot as 1.18 e V and 94.04 A·cm-2·K-2, respectively. The ¯ϕ_B0 obtained from the modified Richardson plot was in good agreement with the theoretical value calculated from the work function of Ni and electron affinity of β-Ga2O3. The I-V-T characteristics of Ni/-Ga2O3 Schottky diodes can be successfully explained by the thermionic emission theory with a single Gaussian distribution of the barrier height.
Gallium nitride (GaN) based transistors have been of interest to power electronics community because of their high breakdown voltage, high sheet carrier density, and the high saturation velocity of GaN. The low switching losses of GaN enable high-frequency operation which reduces bulky passive components with negligible change in efficiency [1,2]. The most established GaN electronic devices are fabricated on the Ga-polar orientation of GaN. Recently, N-polar GaN based devices are being explored for high frequency applications due to their advantages over Ga-face, such as lower contact resistance since the 2DEG is contacted through a lower bandgap material and better electron confinement due to natural back-barrier provided by the charge inducing barrier [3]. In this work, the first N-polar GaN current aperture vertical electron transistor is presented. The samples were grown by metal-organic chemical vapor deposition on c-plane Sapphire substrate. Mg ions were implanted at 80keV (dose: 1×〖10〗^15 〖cm〗^(-2)) into the top GaN layer, everywhere except the current aperture to form the current blocking layer. A 7 A^0 AlN to reduce alloy scattering followed by 150nm UID N-polar GaN as channel were regrown on top of the implanted structure. The 2DEG density and the mobility of the as-grown sample, determined using Hall measurement, were 1.1×〖10〗^13 〖cm〗^(-2) and 1800 〖cm〗^2/(V-S) , respectively. The CAVET showed excellent device modulation and a maximum current of 2 KA〖cm〗^(-2) at V_G=2V. The maximum transconductance per mm of source was 140 mS. The device had a very large pinch-off voltage of -14V as calculated due to the presence of high charge density in the channel.
[1] S. Chowdhury et al 2013 Semicond. Sci. Technol. 28 074014
[2] J. Millán, et al 2014 IEEE Transactions on Power Electronics, 29, 2155
[3] Uttam Singisettiet al 2013 IOP Semicond. Sci. Technol. 28 074006
In this work, a study of two different types of current aperture vertical electron transistor (CAVET) with ion-implanted blocking layer are presented. The device fabrication and performance limitation of a CAVET with a dielectric gate is discussed, and the breakdown limiting structure is evaluated using on-wafer test structures. The gate dielectric limited the device breakdown to 50V, while the blocking layer was able to withstand over 400V. To improve the device performance, an alternative CAVET structure with a p-GaN gate instead of dielectric is designed and realized. The pGaN gated CAVET structure increased the breakdown voltage to over 400V. Measurement of test structures on the wafer showed the breakdown was limited by the blocking layer instead of the gate p-n junction.
Al2O3 has been an attractive gate dielectric for GaN power devices owing to its large conduction band offset with GaN (~2.13eV), relatively high dielectric constant (~9.0) and high breakdown electric field (~10 MV/cm). Due to exceptional control over film uniformity and deposition rate, atomic layer deposition (ALD) has been widely used for Al2O3 deposition. The major obstacle to ALD Al2O3 on GaN is its high interface-state density (Dit) caused by incomplete chemical bonds, native oxide layer and impurities at the Al2O3/GaN interface. Therefore, an appropriate surface pretreatment prior to deposition is essential for obtaining high-quality interface. In this study, we investigated the effect of TMA, H2O and Ar/N2 plasma pretreatment on Dit and border traps (Nbt). 5 cycles of TMA purge, 5 cycles of H2O purge and Ar/N2 plasma pretreatment were conducted on GaN prior to deposition of ALD Al2O3. Al2O3/GaN metaloxide-semiconductor capacitors (MOSCAPs) were fabricated for the characterization of Dit and Nbt using UV-assisted capacitance-voltage (C-V) technique. The results show that TMA and H2O pretreatment had trivial effects on interface engineering whereas Ar/N2 plasma pretreatment slightly reduced Dit and significantly reduced Nbt.
We report the use of sol-gel method at room ambient to grow nanoscale thin film of Ga2O3 on Si surface for both surface
passivation and gate dielectric. The admittance measurements were carried out in the frequency range of 20 kHz-1 MHz
at room temperature. Voltage dependent profile of interfacial trap density (Dit) was obtained by using low and high
frequency capacitance method. The capacitance (C)-voltage (V) analyses show that the structures have a low interfacial
trap density (Dit) of 1x1012 cm-2eV-1. The Ga2O3 thin film synthesized via sol-gel method directly on devices to function
as a gate dielectric film is found to be very effective. We also present our experimental results for a number of gate
dielectric and device passivation applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.