Free-space optical communication holds the promise of high-throughput wireless communication channels for long distances as well as for short-range indoor applications. To fully benefit from the high data rates enabled by optical carriers, the light needs to be efficiently collected onto a fast photodetector, which requires complex pointing and tracking systems. Here, we show that fluorescent materials can be used to increase the active area of a photodiode by orders of magnitude while maintaining its short response time and increasing its field of view. Using commercially available materials, we demonstrate a detector with an active area of 126 cm2 achieving data rates up to 2.1 Gbps at an eye-safe intensity. We demonstrate a detector geometry with omnidirectional sensitivity and discuss the need for new materials tailored for communication applications.
Although photons do no a ect each other in vacuum, interactions between individual photons could enable a wide variety of scienti c and engineering applications. Here we report on the creation of a quantum nonlinear medium with large photon-photon interactions at the single photon level. Our approach relies on Electromagnetically Induced Transparency (EIT) techniques, in which individual photons are coherently mapped onto strongly interacting Rydberg atoms. Under EIT conditions, photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons, which experience long-range interactions through the Rydberg blockade. In particular, we demonstrate coherent photon-photon interactions, akin to those associated with conventional massive particles, paving the way for novel photonics states and quantum simulation with light.
Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths
are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric
field intensity per photon and interaction lengths not limited by diffraction are some of the unique features of
this system. Here, we present the results of our first nonlinear optics experiments in this system including a
demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons
per pulse.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.